R/cnv_main.R
cnv_quantifySigExposure.Rd
quantify exposure for samples using Linear Combination Decomposition (LCD)
cnv_quantifySigExposure(sample_by_component, component_by_signature = NULL)
sample_by_component | a sample-by-component |
---|---|
component_by_signature | a componet by signature matrix, default is |
a list
contains absolute/relative exposure.
# NOT RUN { ## load example copy-number data from tcga load(system.file("inst/extdata", "example_cn_list.RData", package = "VSHunter")) ## generate copy-number features tcga_features = cnv_derivefeatures(CN_data = tcga_segTabs, cores = 1, genome_build = "hg19") ## fit mixture model (this will take some time) tcga_components = cnv_fitMixModels(CN_features = tcga_features, cores = 1) ## generate a sample-by-component matrix tcga_sample_component_matrix = cnv_generateSbCMatrix(tcga_features, tcga_components, cores = 1) ## optimal rank survey tcga_sig_choose = cnv_chooseSigNumber(tcga_sample_component_matrix, nrun = 10, cores = 1, plot = FALSE) tcga_signatures = cnv_extractSignatures(tcga_sample_component_matrix, nsig = 3, cores = 1) w = NMF::basis(tcga_signatures) # signature matrix tcga_exposure = cnv_quantifySigExposure(sample_by_component = tcga_sample_component_matrix, component_by_signature = w) # }