MAF file is more recommended. In this function, we will mimic
the MAF object from the key c(1, 2, 4, 5, 7)
columns of VCF file.
read_vcf(
vcfs,
samples = NULL,
genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
keep_only_pass = FALSE,
verbose = TRUE
)
a MAF.
vcfs <- list.files(system.file("extdata", package = "sigminer"), "*.vcf", full.names = TRUE)
# \donttest{
maf <- read_vcf(vcfs)
#> Reading file(s): /home/runner/work/_temp/Library/sigminer/extdata/test1.vcf, /home/runner/work/_temp/Library/sigminer/extdata/test2.vcf, /home/runner/work/_temp/Library/sigminer/extdata/test3.vcf
#> It seems /home/runner/work/_temp/Library/sigminer/extdata/test2.vcf has no normal VCF header, try parsing without header.
#> Annotating Variant Type...
#> Downloading https://zenodo.org/record/10360995/files/human_hg19_gene_info.rds to /home/runner/work/_temp/Library/sigminer/extdata/human_hg19_gene_info.rds
#> Annotating mutations to first matched gene based on database of hg19...
#> Transforming into a MAF object...
#> -Validating
#> --Non MAF specific values in Variant_Classification column:
#> Unknown
#> -Summarizing
#> -Processing clinical data
#> --Missing clinical data
#> -Finished in 0.024s elapsed (0.038s cpu)
maf <- read_vcf(vcfs, keep_only_pass = TRUE)
#> Reading file(s): /home/runner/work/_temp/Library/sigminer/extdata/test1.vcf, /home/runner/work/_temp/Library/sigminer/extdata/test2.vcf, /home/runner/work/_temp/Library/sigminer/extdata/test3.vcf
#> It seems /home/runner/work/_temp/Library/sigminer/extdata/test2.vcf has no normal VCF header, try parsing without header.
#> Annotating Variant Type...
#> Annotating mutations to first matched gene based on database of hg19...
#> Transforming into a MAF object...
#> -Validating
#> --Non MAF specific values in Variant_Classification column:
#> Unknown
#> -Summarizing
#> -Processing clinical data
#> --Missing clinical data
#> -Finished in 0.022s elapsed (0.036s cpu)
# }