Use NMF package to evaluate the optimal number of signatures.
This is used along with sig_extract.
Users should library(NMF)
firstly. If NMF objects are returned,
the result can be further visualized by NMF plot methods like
NMF::consensusmap()
and NMF::basismap()
.
sig_estimate()
shows comprehensive rank survey generated by
NMF package, sometimes
it is hard to consider all measures. show_sig_number_survey()
provides a
one or two y-axis visualization method to help users determine
the optimal signature number (showing both
stability ("cophenetic") and error (RSS) at default).
Users can also set custom measures to show.
show_sig_number_survey2()
is modified from NMF package to
better help users to explore survey of signature number.
sig_estimate(
nmf_matrix,
range = 2:5,
nrun = 10,
use_random = FALSE,
method = "brunet",
seed = 123456,
cores = 1,
keep_nmfObj = FALSE,
save_plots = FALSE,
plot_basename = file.path(tempdir(), "nmf"),
what = "all",
verbose = FALSE
)
show_sig_number_survey(
object,
x = "rank",
left_y = "cophenetic",
right_y = "rss",
left_name = left_y,
right_name = toupper(right_y),
left_color = "black",
right_color = "red",
left_shape = 16,
right_shape = 18,
shape_size = 4,
highlight = NULL
)
show_sig_number_survey2(
x,
y = NULL,
what = c("all", "cophenetic", "rss", "residuals", "dispersion", "evar", "sparseness",
"sparseness.basis", "sparseness.coef", "silhouette", "silhouette.coef",
"silhouette.basis", "silhouette.consensus"),
na.rm = FALSE,
xlab = "Total signatures",
ylab = "",
main = "Signature number survey using NMF package"
)
a matrix
used for NMF decomposition with rows indicate samples and columns indicate components.
a numeric
vector containing the ranks of factorization to try. Note that duplicates are removed
and values are sorted in increasing order. The results are notably returned in this order.
a numeric
giving the number of run to perform for each value in range
, nrun
set to 30~50 is
enough to achieve robust result.
Should generate random data from input to test measurements. Default is TRUE
.
specification of the NMF algorithm. Use 'brunet' as default. Available methods for NMF decompositions are 'brunet', 'lee', 'ls-nmf', 'nsNMF', 'offset'.
specification of the starting point or seeding method, which will compute a starting point, usually using data from the target matrix in order to provide a good guess.
number of cpu cores to run NMF.
default is FALSE
, if TRUE
, keep NMF objects from runs, and the result may be huge.
if TRUE
, save signature number survey plot to local machine.
when save plots, set custom basename for file path.
a character vector whose elements partially match one of the following item,
which correspond to the measures computed by summary()
on each – multi-run – NMF result:
'all', 'cophenetic', 'rss', 'residuals', 'dispersion', 'evar', 'silhouette'
(and more specific *.coef
, *.basis
, *.consensus
), 'sparseness'
(and more specific *.coef
, *.basis
).
It specifies which measure must be plotted (what='all' plots all the measures).
if TRUE
, print extra message.
a Survey
object generated from sig_estimate, or
a data.frame
contains at least rank columns and columns for
one measure.
a data.frame
or NMF.rank
object obtained from sig_estimate()
.
column name for left y axis.
column name for right y axis.
label name for left y axis.
label name for right y axis.
color for left axis.
color for right axis.
shape setting.
a integer
to highlight a x
.
for random simulation,
a data.frame
or NMF.rank
object obtained from sig_estimate()
.
single logical that specifies if the rank
for which the measures are NA values should be removed
from the graph or not (default to FALSE
). This is
useful when plotting results which include NAs due to
error during the estimation process. See argument
stop
for nmfEstimateRank
.
x-axis label
y-axis label
main title
sig_estimate: a list
contains information of NMF run and rank survey.
show_sig_number_survey: a ggplot
object
show_sig_number_survey2: a ggplot
object
The most common approach is to choose the smallest rank for which cophenetic correlation coefficient starts decreasing (Used by this function). Another approach is to choose the rank for which the plot of the residual sum of squares (RSS) between the input matrix and its estimate shows an inflection point. More custom features please directly use NMF::nmfEstimateRank.
Gaujoux, Renaud, and Cathal Seoighe. "A flexible R package for nonnegative matrix factorization." BMC bioinformatics 11.1 (2010): 367.
sig_extract for extracting signatures using NMF package, sig_auto_extract for extracting signatures using automatic relevance determination technique.
sig_estimate for estimating signature number for sig_extract, show_sig_number_survey2 for more visualization method.
# \donttest{
load(system.file("extdata", "toy_copynumber_tally_W.RData",
package = "sigminer", mustWork = TRUE
))
library(NMF)
cn_estimate <- sig_estimate(cn_tally_W$nmf_matrix,
cores = 1, nrun = 5,
verbose = TRUE
)
#> Compute NMF rank= 2 ... + measures ... OK
#> Compute NMF rank= 3 ... + measures ... OK
#> Compute NMF rank= 4 ... + measures ... OK
#> Compute NMF rank= 5 ... + measures ... OK
#> Estimation of rank based on observed data.
#> method seed rng metric rank sparseness.basis sparseness.coef rss
#> 2 brunet random 3 KL 2 0.8993733 0.6666114 2781.0128
#> 3 brunet random 2 KL 3 0.9073643 0.5765067 1299.9670
#> 4 brunet random 1 KL 4 0.9084143 0.7776175 876.3489
#> 5 brunet random 1 KL 5 0.9089332 0.8287342 753.5275
#> evar silhouette.coef silhouette.basis residuals niter cpu cpu.all nrun
#> 2 0.9968140 1.0000000 1.0000000 289.6950 440 0.033 6.613 5
#> 3 0.9985107 0.7821464 0.7463076 222.6087 770 0.042 6.762 5
#> 4 0.9989960 0.7206650 0.6606767 174.0583 600 0.036 6.840 5
#> 5 0.9991367 0.4363604 0.7187290 126.1886 960 0.053 6.847 5
#> cophenetic dispersion silhouette.consensus
#> 2 0.9961624 0.8848 0.9550000
#> 3 0.8995319 0.5456 0.5973343
#> 4 0.9548909 0.7760 0.7540659
#> 5 0.9339126 0.7568 0.4349359
p <- show_sig_number_survey2(cn_estimate$survey)
p
# Show two measures
show_sig_number_survey(cn_estimate)
# Show one measure
p1 <- show_sig_number_survey(cn_estimate, right_y = NULL)
p1
p2 <- add_h_arrow(p, x = 4.1, y = 0.953, label = "selected number")
p2
# Show data from a data.frame
p3 <- show_sig_number_survey(cn_estimate$survey)
p3
# Show other measures
head(cn_estimate$survey)
#> method seed rng metric rank sparseness.basis sparseness.coef rss
#> 2 brunet random 3 KL 2 0.8993733 0.6666114 2781.0128
#> 3 brunet random 2 KL 3 0.9073643 0.5765067 1299.9670
#> 4 brunet random 1 KL 4 0.9084143 0.7776175 876.3489
#> 5 brunet random 1 KL 5 0.9089332 0.8287342 753.5275
#> evar silhouette.coef silhouette.basis residuals niter cpu cpu.all nrun
#> 2 0.9968140 1.0000000 1.0000000 289.6950 440 0.033 6.613 5
#> 3 0.9985107 0.7821464 0.7463076 222.6087 770 0.042 6.762 5
#> 4 0.9989960 0.7206650 0.6606767 174.0583 600 0.036 6.840 5
#> 5 0.9991367 0.4363604 0.7187290 126.1886 960 0.053 6.847 5
#> cophenetic dispersion silhouette.consensus
#> 2 0.9961624 0.8848 0.9550000
#> 3 0.8995319 0.5456 0.5973343
#> 4 0.9548909 0.7760 0.7540659
#> 5 0.9339126 0.7568 0.4349359
p4 <- show_sig_number_survey(cn_estimate$survey,
right_y = "dispersion",
right_name = "dispersion"
)
p4
p5 <- show_sig_number_survey(cn_estimate$survey,
right_y = "evar",
right_name = "evar"
)
p5
# }