This function provides an interface to software SigProfiler.
More please see https://github.com/AlexandrovLab/SigProfilerExtractor.
Typically, a reference genome is not required because the input is a matrix (my understanding).
If you are using refitting result by SigProfiler, please make sure you have input the matrix same order as examples at https://github.com/AlexandrovLab/SigProfilerMatrixGenerator/tree/master/SigProfilerMatrixGenerator/references/matrix/BRCA_example. If not, use sigprofiler_reorder()
firstly.
sigprofiler_extract(
nmf_matrix,
output,
output_matrix_only = FALSE,
range = 2:5,
nrun = 10L,
refit = FALSE,
refit_plot = FALSE,
is_exome = FALSE,
init_method = c("random", "nndsvd_min", "nndsvd", "nndsvda", "nndsvdar"),
cores = -1L,
genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
use_conda = FALSE,
py_path = NULL,
sigprofiler_version = "1.1.3"
)
sigprofiler_import(
output,
order_by_expo = FALSE,
type = c("suggest", "refit", "all")
)
sigprofiler_reorder(
nmf_matrix,
type = c("SBS96", "SBS6", "SBS12", "SBS192", "SBS1536", "SBS3072", "DBS78", "DBS312",
"DBS1248", "DBS4992")
)
a matrix
used for NMF decomposition with rows indicate samples and columns indicate components.
output directory.
if TRUE
, only generate matrix file for SigProfiler
so user can call SigProfiler with the input by himself.
signature number range, i.e. 2:5
.
the number of iteration to be performed to extract each signature number.
if TRUE
, then refit the denovo signatures with nnls. Same
meaning as optimize
option in sig_extract or sig_auto_extract.
if TRUE
, SigProfiler will make
denovo to COSMIC sigantures decompostion plots. However, this may fail due
to some matrix cannot be identified by SigProfiler plot program.
if TRUE
, the exomes will be extracted.
the initialization algorithm for W and H matrix of NMF. Options are 'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'alexandrov-lab-custom' and 'nndsvd_min'.
number of cores used for computation.
I think this option is useless when input is matrix
, keep it
in case it is useful.
if TRUE
, create an independent conda environment to run SigProfiler.
path to Python executable file, e.g. '/Users/wsx/anaconda3/bin/python'.
version of SigProfilerExtractor
. If this
package is not installed, the specified package will be installed.
If this package is installed, this option is useless.
if TRUE
, order the import signatures by their exposures, e.g. the signature
contributed the most exposure in all samples will be named as Sig1
.
mutational signature type.
For sigprofiler_extract()
, returns nothing. See output
directory.
For sigprofiler_import()
, a list
containing Signature
object.
A NMF matrix for input of sigprofiler_extract()
.
if (FALSE) {
load(system.file("extdata", "toy_copynumber_tally_W.RData",
package = "sigminer", mustWork = TRUE
))
reticulate::conda_list()
sigprofiler_extract(cn_tally_W$nmf_matrix, "~/test/test_sigminer",
use_conda = TRUE
)
sigprofiler_extract(cn_tally_W$nmf_matrix, "~/test/test_sigminer",
use_conda = FALSE, py_path = "/Users/wsx/anaconda3/bin/python"
)
}
data("simulated_catalogs")
sigprofiler_reorder(t(simulated_catalogs$set1))
#> Downloading reference file...
#> Reordering...
#> Done
#> A[C>A]A A[C>A]C A[C>A]G A[C>A]T A[C>G]A A[C>G]C A[C>G]G A[C>G]T
#> Sample_1 911 761 88 744 487 248 80 472
#> Sample_2 195 175 19 174 70 33 3 72
#> Sample_3 95 51 12 55 54 32 9 57
#> Sample_4 131 71 14 77 85 43 16 85
#> Sample_5 33 10 2 14 8 4 2 10
#> Sample_6 30 18 2 19 10 6 2 11
#> Sample_7 28 9 2 13 7 5 2 8
#> Sample_8 48 23 4 23 11 9 4 14
#> Sample_9 70 48 7 57 71 40 13 68
#> Sample_10 227 153 19 160 99 57 20 101
#> Sample_11 47 32 7 29 33 21 6 35
#> Sample_12 1077 520 94 584 531 291 127 538
#> Sample_13 37 21 3 24 9 4 1 9
#> Sample_14 26 16 4 16 20 11 3 20
#> Sample_15 119 57 13 69 70 42 13 73
#> Sample_16 214 76 15 100 58 34 18 63
#> Sample_17 184 140 32 115 57 46 5 63
#> Sample_18 93 81 7 87 26 15 2 26
#> Sample_19 653 255 60 310 173 119 46 193
#> Sample_20 59 20 5 26 8 7 3 10
#> Sample_21 288 250 23 245 161 81 27 160
#> Sample_22 600 431 76 400 474 279 99 477
#> Sample_23 127 43 7 62 17 14 7 22
#> Sample_24 779 435 76 467 511 281 108 517
#> Sample_25 221 61 12 96 15 19 11 26
#> Sample_26 56 52 6 49 17 12 1 20
#> Sample_27 158 109 15 115 57 29 7 58
#> Sample_28 86 29 6 39 22 15 7 24
#> Sample_29 55 45 5 46 18 11 2 18
#> Sample_30 42 36 4 37 12 7 1 12
#> A[C>T]A A[C>T]C A[C>T]G A[C>T]T A[T>A]A A[T>A]C A[T>A]G A[T>A]T
#> Sample_1 675 282 349 586 381 365 358 534
#> Sample_2 248 103 389 171 85 91 79 147
#> Sample_3 194 103 372 113 41 45 44 64
#> Sample_4 109 54 48 76 52 47 49 56
#> Sample_5 13 5 9 9 4 3 4 4
#> Sample_6 25 12 42 18 7 7 7 11
#> Sample_7 20 10 35 13 5 5 6 7
#> Sample_8 48 24 220 25 10 6 9 16
#> Sample_9 104 52 73 74 31 32 33 41
#> Sample_10 160 77 123 140 79 68 90 115
#> Sample_11 103 55 251 62 26 23 30 38
#> Sample_12 632 322 284 490 305 263 301 324
#> Sample_13 19 8 21 16 11 10 10 16
#> Sample_14 51 25 39 31 17 16 18 20
#> Sample_15 138 75 186 96 50 42 60 64
#> Sample_16 73 37 42 61 39 31 39 39
#> Sample_17 560 270 1928 266 97 106 73 161
#> Sample_18 76 28 141 66 34 34 36 64
#> Sample_19 481 255 1004 320 181 146 201 222
#> Sample_20 33 17 78 21 12 10 13 14
#> Sample_21 205 85 186 187 112 103 109 171
#> Sample_22 869 466 1702 590 289 244 320 382
#> Sample_23 56 29 98 45 19 15 24 28
#> Sample_24 630 339 406 495 289 237 320 340
#> Sample_25 125 62 409 75 20 15 25 34
#> Sample_26 138 66 449 77 21 26 18 50
#> Sample_27 114 49 79 93 65 60 64 91
#> Sample_28 39 22 32 32 18 14 22 21
#> Sample_29 59 25 135 42 22 22 22 37
#> Sample_30 53 23 84 37 18 20 17 32
#> A[T>C]A A[T>C]C A[T>C]G A[T>C]T A[T>G]A A[T>G]C A[T>G]G A[T>G]T
#> Sample_1 1085 704 1014 896 107 51 245 206
#> Sample_2 250 155 270 189 24 13 39 33
#> Sample_3 190 98 219 124 13 15 23 26
#> Sample_4 211 125 202 148 15 11 32 28
#> Sample_5 5 3 4 7 1 1 3 2
#> Sample_6 12 7 15 13 2 2 5 4
#> Sample_7 16 8 18 13 2 3 4 7
#> Sample_8 27 13 21 22 3 4 6 7
#> Sample_9 83 69 79 81 9 33 39 146
#> Sample_10 184 82 142 180 26 13 52 32
#> Sample_11 102 42 91 75 10 8 15 14
#> Sample_12 1073 659 1034 831 82 65 229 180
#> Sample_13 34 21 33 25 3 2 5 3
#> Sample_14 89 48 84 58 5 4 8 8
#> Sample_15 177 81 146 140 18 23 34 71
#> Sample_16 132 85 132 103 9 9 28 20
#> Sample_17 636 419 699 353 26 46 40 130
#> Sample_18 49 37 36 61 11 16 23 71
#> Sample_19 815 432 747 560 56 49 95 80
#> Sample_20 60 37 59 39 3 4 6 11
#> Sample_21 166 91 133 201 34 13 76 49
#> Sample_22 925 412 783 769 102 73 207 170
#> Sample_23 45 26 48 44 5 10 14 29
#> Sample_24 812 359 665 718 97 64 208 146
#> Sample_25 48 43 64 47 4 27 22 92
#> Sample_26 53 34 80 41 6 11 13 32
#> Sample_27 225 129 205 164 19 9 30 22
#> Sample_28 66 32 58 52 6 5 12 8
#> Sample_29 69 48 64 54 7 10 14 41
#> Sample_30 67 45 74 47 5 5 10 18
#> C[C>A]A C[C>A]C C[C>A]G C[C>A]T C[C>G]A C[C>G]C C[C>G]G C[C>G]T
#> Sample_1 883 725 84 696 349 295 66 462
#> Sample_2 225 230 44 337 61 38 4 72
#> Sample_3 142 127 55 266 39 30 12 52
#> Sample_4 170 88 32 101 67 48 18 91
#> Sample_5 55 15 10 25 8 5 4 13
#> Sample_6 41 25 9 42 7 7 3 11
#> Sample_7 45 17 11 35 5 5 3 8
#> Sample_8 60 25 11 34 8 8 5 13
#> Sample_9 55 41 9 48 54 39 12 67
#> Sample_10 229 125 32 169 68 66 22 94
#> Sample_11 37 35 14 71 23 19 7 29
#> Sample_12 1464 645 265 795 370 332 141 554
#> Sample_13 53 27 9 35 8 6 2 11
#> Sample_14 28 22 8 30 15 11 3 18
#> Sample_15 128 48 29 89 56 42 18 71
#> Sample_16 336 114 63 159 40 41 25 69
#> Sample_17 247 298 82 420 34 27 4 34
#> Sample_18 79 63 4 70 23 16 2 24
#> Sample_19 925 334 188 494 115 127 71 177
#> Sample_20 94 32 19 45 5 7 6 10
#> Sample_21 255 216 23 255 123 95 23 164
#> Sample_22 453 366 100 551 319 285 94 426
#> Sample_23 200 69 42 127 11 16 13 22
#> Sample_24 847 386 158 574 376 308 119 520
#> Sample_25 370 119 79 221 9 17 22 27
#> Sample_26 68 98 26 187 13 8 1 15
#> Sample_27 184 112 26 128 47 35 10 59
#> Sample_28 127 38 25 64 14 17 10 24
#> Sample_29 50 42 5 41 14 11 2 16
#> Sample_30 49 50 10 71 8 8 1 9
#> C[C>T]A C[C>T]C C[C>T]G C[C>T]T C[T>A]A C[T>A]C C[T>A]G C[T>A]T
#> Sample_1 556 312 245 783 290 550 427 683
#> Sample_2 175 95 352 209 61 117 87 138
#> Sample_3 136 105 365 121 19 40 43 42
#> Sample_4 135 78 55 124 28 59 52 63
#> Sample_5 26 9 15 14 2 4 5 5
#> Sample_6 18 10 42 18 5 10 9 13
#> Sample_7 19 12 37 13 2 6 7 10
#> Sample_8 41 31 130 33 4 8 9 10
#> Sample_9 148 56 84 98 21 75 54 173
#> Sample_10 140 92 92 158 59 88 100 128
#> Sample_11 90 67 176 75 13 18 27 26
#> Sample_12 738 437 371 711 182 380 352 431
#> Sample_13 19 10 20 22 7 14 11 16
#> Sample_14 65 35 39 55 8 17 15 17
#> Sample_15 169 103 142 124 25 49 62 100
#> Sample_16 100 56 69 89 19 48 46 52
#> Sample_17 481 315 1331 433 28 137 57 138
#> Sample_18 69 26 90 72 28 63 47 124
#> Sample_19 557 380 712 487 74 160 182 178
#> Sample_20 43 26 59 37 4 14 12 17
#> Sample_21 116 77 127 183 96 149 138 207
#> Sample_22 736 566 1120 692 185 271 335 380
#> Sample_23 58 34 108 45 9 26 29 47
#> Sample_24 654 448 358 583 184 272 352 384
#> Sample_25 151 74 341 90 4 43 37 101
#> Sample_26 65 53 355 67 14 34 23 51
#> Sample_27 115 68 62 135 40 75 65 90
#> Sample_28 49 33 37 41 9 16 23 21
#> Sample_29 58 29 85 59 15 39 26 67
#> Sample_30 36 21 78 47 12 30 20 40
#> C[T>C]A C[T>C]C C[T>C]G C[T>C]T C[T>G]A C[T>G]C C[T>G]G C[T>G]T
#> Sample_1 643 944 828 875 79 197 310 498
#> Sample_2 144 185 243 164 16 38 60 71
#> Sample_3 100 97 198 107 8 32 48 75
#> Sample_4 121 151 159 140 10 31 47 55
#> Sample_5 2 5 3 5 0 2 5 7
#> Sample_6 6 9 14 8 1 4 8 7
#> Sample_7 8 13 19 25 1 6 8 50
#> Sample_8 9 14 15 15 1 6 9 8
#> Sample_9 65 208 160 468 7 98 85 1112
#> Sample_10 74 95 93 112 16 28 62 67
#> Sample_11 42 37 68 53 5 13 22 36
#> Sample_12 621 835 816 744 62 200 327 323
#> Sample_13 19 26 27 23 2 5 8 7
#> Sample_14 49 53 67 55 4 10 14 21
#> Sample_15 80 128 139 259 10 52 60 488
#> Sample_16 78 111 107 92 7 27 45 38
#> Sample_17 399 531 671 594 17 124 110 617
#> Sample_18 29 108 74 234 6 46 43 541
#> Sample_19 413 480 571 491 33 99 157 198
#> Sample_20 35 50 53 56 2 11 14 58
#> Sample_21 73 126 95 121 22 40 85 76
#> Sample_22 395 429 554 540 62 147 264 346
#> Sample_23 22 51 58 96 3 24 31 208
#> Sample_24 345 397 444 483 60 135 267 318
#> Sample_25 34 130 127 291 1 68 65 721
#> Sample_26 30 51 101 88 3 27 30 185
#> Sample_27 121 154 160 146 12 25 42 49
#> Sample_28 30 36 43 39 3 10 19 21
#> Sample_29 43 91 76 152 4 29 27 289
#> Sample_30 43 65 75 80 4 16 18 107
#> G[C>A]A G[C>A]C G[C>A]G G[C>A]T G[C>G]A G[C>G]C G[C>G]G G[C>G]T
#> Sample_1 548 445 47 493 232 192 27 337
#> Sample_2 133 110 16 132 27 30 2 47
#> Sample_3 137 67 24 114 23 31 4 33
#> Sample_4 169 66 19 112 39 33 6 55
#> Sample_5 74 12 6 43 4 3 1 6
#> Sample_6 44 14 4 31 5 5 1 8
#> Sample_7 61 12 6 38 3 3 1 5
#> Sample_8 80 19 6 47 5 7 1 8
#> Sample_9 61 39 11 50 36 28 5 52
#> Sample_10 241 103 22 177 47 41 8 64
#> Sample_11 37 31 9 34 15 17 3 18
#> Sample_12 1651 476 150 1048 257 217 40 362
#> Sample_13 57 16 5 36 4 3 0 6
#> Sample_14 20 18 5 16 9 8 1 10
#> Sample_15 175 63 23 115 33 29 6 41
#> Sample_16 430 82 34 252 28 23 5 40
#> Sample_17 157 137 34 114 20 47 0 29
#> Sample_18 71 42 5 57 12 9 1 19
#> Sample_19 1201 290 115 704 80 81 16 90
#> Sample_20 125 24 11 70 4 4 1 4
#> Sample_21 169 137 12 171 76 64 10 116
#> Sample_22 397 343 72 378 227 222 37 301
#> Sample_23 276 49 23 164 8 9 2 12
#> Sample_24 966 379 108 688 243 211 41 331
#> Sample_25 534 81 43 305 8 10 2 14
#> Sample_26 44 39 8 51 6 14 0 14
#> Sample_27 170 77 17 117 25 21 3 33
#> Sample_28 172 35 15 102 11 10 2 13
#> Sample_29 42 27 4 31 9 8 1 12
#> Sample_30 31 24 4 28 5 6 0 8
#> G[C>T]A G[C>T]C G[C>T]G G[C>T]T G[T>A]A G[T>A]C G[T>A]G G[T>A]T
#> Sample_1 439 275 221 403 192 243 263 407
#> Sample_2 290 298 496 248 42 58 49 96
#> Sample_3 309 340 518 258 24 28 27 29
#> Sample_4 108 82 53 90 25 29 33 36
#> Sample_5 13 8 11 7 2 2 2 4
#> Sample_6 32 32 54 25 4 5 5 9
#> Sample_7 27 29 47 22 3 3 4 5
#> Sample_8 41 40 136 29 4 4 5 8
#> Sample_9 72 48 63 54 17 27 39 39
#> Sample_10 109 84 88 104 52 44 60 79
#> Sample_11 118 120 212 99 17 12 18 15
#> Sample_12 590 424 276 474 155 183 215 250
#> Sample_13 16 16 25 15 5 6 6 11
#> Sample_14 55 46 41 46 9 9 10 9
#> Sample_15 119 108 145 106 33 25 39 34
#> Sample_16 68 52 50 53 19 23 24 34
#> Sample_17 681 714 1573 537 21 64 39 67
#> Sample_18 24 18 90 26 19 24 29 50
#> Sample_19 440 415 707 387 98 87 102 114
#> Sample_20 29 27 55 24 5 7 6 9
#> Sample_21 145 115 173 130 64 68 84 130
#> Sample_22 856 783 1260 718 182 146 224 211
#> Sample_23 62 69 123 53 12 13 15 22
#> Sample_24 575 462 361 497 186 147 222 216
#> Sample_25 131 144 364 97 8 17 18 30
#> Sample_26 202 234 479 163 9 18 14 29
#> Sample_27 81 67 69 82 34 36 37 58
#> Sample_28 35 32 31 32 12 9 12 13
#> Sample_29 33 28 84 30 10 15 16 27
#> Sample_30 59 63 106 53 9 14 12 22
#> G[T>C]A G[T>C]C G[T>C]G G[T>C]T G[T>G]A G[T>G]C G[T>G]G G[T>G]T
#> Sample_1 1015 567 759 820 70 82 326 270
#> Sample_2 251 132 192 185 5 9 34 46
#> Sample_3 158 83 133 112 6 7 30 28
#> Sample_4 196 104 151 154 11 10 50 29
#> Sample_5 2 3 5 5 1 1 8 4
#> Sample_6 8 6 9 7 2 2 9 5
#> Sample_7 10 8 11 10 1 2 7 14
#> Sample_8 18 13 12 20 2 2 12 5
#> Sample_9 36 65 50 69 10 47 59 280
#> Sample_10 80 57 75 91 16 9 70 39
#> Sample_11 57 33 46 50 4 2 16 11
#> Sample_12 958 539 777 793 91 79 415 205
#> Sample_13 34 18 27 27 1 1 7 5
#> Sample_14 78 39 59 60 2 1 8 8
#> Sample_15 84 67 81 96 9 17 44 123
#> Sample_16 128 73 111 110 12 9 62 28
#> Sample_17 739 386 526 539 1 31 35 175
#> Sample_18 19 35 24 41 2 20 24 141
#> Sample_19 677 365 538 567 27 8 149 85
#> Sample_20 61 34 49 50 2 2 12 18
#> Sample_21 80 64 70 89 23 23 104 61
#> Sample_22 485 307 393 459 72 55 285 148
#> Sample_23 23 24 34 33 4 8 30 58
#> Sample_24 386 259 359 400 78 52 324 150
#> Sample_25 32 51 55 61 6 26 54 186
#> Sample_26 51 34 44 37 1 10 13 53
#> Sample_27 203 106 154 162 6 3 32 28
#> Sample_28 43 26 40 41 4 1 22 10
#> Sample_29 62 44 49 59 2 11 16 77
#> Sample_30 71 39 55 54 1 5 9 32
#> T[C>A]A T[C>A]C T[C>A]G T[C>A]T T[C>G]A T[C>G]C T[C>G]G T[C>G]T
#> Sample_1 621 617 71 813 310 367 35 555
#> Sample_2 424 224 33 332 1479 329 51 1822
#> Sample_3 223 129 34 206 710 193 29 847
#> Sample_4 296 175 36 244 1051 293 42 1266
#> Sample_5 103 50 13 100 326 73 13 409
#> Sample_6 35 24 6 53 23 9 2 42
#> Sample_7 54 30 9 67 114 32 5 136
#> Sample_8 58 43 12 88 17 13 2 32
#> Sample_9 83 65 18 89 235 97 13 318
#> Sample_10 221 161 37 314 95 75 12 180
#> Sample_11 92 57 15 82 240 68 12 307
#> Sample_12 1269 979 239 1748 1504 759 105 2013
#> Sample_13 73 40 9 73 207 52 7 245
#> Sample_14 80 45 10 55 279 64 11 357
#> Sample_15 289 154 42 257 929 253 39 1117
#> Sample_16 278 192 56 421 234 111 16 302
#> Sample_17 216 226 52 244 126 47 6 200
#> Sample_18 103 61 11 118 190 50 6 236
#> Sample_19 903 620 188 1252 817 343 52 1003
#> Sample_20 73 53 17 118 5 12 2 8
#> Sample_21 329 218 24 327 869 286 38 1091
#> Sample_22 498 482 107 646 220 362 52 465
#> Sample_23 155 101 35 266 7 23 4 17
#> Sample_24 1312 812 188 1329 3550 1145 170 4391
#> Sample_25 302 193 71 515 51 36 8 98
#> Sample_26 77 50 10 86 183 47 6 220
#> Sample_27 284 163 31 255 837 219 31 992
#> Sample_28 103 72 24 168 10 24 4 20
#> Sample_29 43 37 7 58 11 12 1 19
#> Sample_30 33 28 5 45 6 6 0 8
#> T[C>T]A T[C>T]C T[C>T]G T[C>T]T T[T>A]A T[T>A]C T[T>A]G T[T>A]T
#> Sample_1 435 394 129 454 385 483 257 714
#> Sample_2 2045 415 339 997 88 101 50 156
#> Sample_3 368 141 181 136 40 42 28 47
#> Sample_4 494 147 51 168 49 68 36 71
#> Sample_5 525 101 59 251 4 4 2 4
#> Sample_6 199 47 40 112 7 7 5 12
#> Sample_7 60 22 23 22 6 4 3 6
#> Sample_8 130 53 113 79 12 7 5 12
#> Sample_9 179 133 87 137 29 37 22 57
#> Sample_10 640 219 117 395 85 70 57 130
#> Sample_11 391 131 144 207 27 19 18 28
#> Sample_12 1027 643 237 533 298 389 222 452
#> Sample_13 99 22 15 33 11 14 6 18
#> Sample_14 592 138 74 302 16 22 12 21
#> Sample_15 468 188 129 190 51 41 36 58
#> Sample_16 170 89 47 75 41 51 27 55
#> Sample_17 1286 496 978 788 107 160 47 140
#> Sample_18 204 76 92 135 39 34 20 73
#> Sample_19 704 480 523 369 201 205 123 219
#> Sample_20 37 32 44 25 14 17 8 16
#> Sample_21 402 137 84 193 113 106 75 207
#> Sample_22 413 661 753 434 293 242 213 384
#> Sample_23 56 53 65 41 23 17 13 27
#> Sample_24 1721 742 289 690 281 249 216 376
#> Sample_25 583 205 293 345 28 21 10 28
#> Sample_26 124 60 204 69 23 19 10 37
#> Sample_27 412 117 52 155 67 78 42 105
#> Sample_28 38 43 24 26 20 18 14 22
#> Sample_29 46 43 70 51 25 28 13 44
#> Sample_30 31 24 38 30 20 25 11 36
#> T[T>C]A T[T>C]C T[T>C]G T[T>C]T T[T>G]A T[T>G]C T[T>G]G T[T>G]T
#> Sample_1 928 744 583 834 126 166 252 405
#> Sample_2 203 149 143 174 19 27 34 69
#> Sample_3 130 98 111 106 23 28 24 65
#> Sample_4 180 140 118 148 25 30 33 57
#> Sample_5 2 6 2 3 1 3 2 8
#> Sample_6 6 8 6 7 2 4 5 12
#> Sample_7 8 10 9 9 2 5 3 15
#> Sample_8 15 14 14 14 4 6 7 14
#> Sample_9 47 85 53 73 18 58 48 296
#> Sample_10 84 87 58 102 30 36 53 87
#> Sample_11 52 40 44 49 15 15 17 34
#> Sample_12 903 771 606 776 148 202 239 349
#> Sample_13 29 23 19 25 2 4 4 8
#> Sample_14 70 51 48 58 8 9 8 18
#> Sample_15 87 91 73 96 26 43 37 151
#> Sample_16 117 108 80 99 15 27 25 52
#> Sample_17 610 428 460 460 36 66 43 204
#> Sample_18 19 39 20 41 5 26 24 147
#> Sample_19 611 486 431 510 76 105 85 187
#> Sample_20 53 44 38 43 4 9 5 23
#> Sample_21 80 89 50 109 37 44 81 124
#> Sample_22 486 422 381 492 164 172 242 457
#> Sample_23 20 35 24 27 5 19 12 58
#> Sample_24 417 405 300 442 157 176 230 396
#> Sample_25 24 65 46 37 4 42 19 146
#> Sample_26 31 27 42 29 6 15 14 68
#> Sample_27 181 136 114 155 19 24 26 48
#> Sample_28 41 39 30 38 8 12 11 25
#> Sample_29 55 51 41 54 5 17 15 64
#> Sample_30 59 46 43 51 4 10 9 37