Get Google Scholar Profile

tinyscholar(
  id,
  sortby_date = FALSE,
  use_cache = TRUE,
  cache_dir = file.path(tempdir(), "tinyscholar")
)

Arguments

id

Your google scholar identifier. You can find it in the URL of your google scholar profile.

sortby_date

Logical. If TRUE, the publications are sorted by date.

use_cache

If TRUE (default), store data to a cache file to avoid querying in next time within a day. The store file is identical for each person and each date.

cache_dir

A directory path.

Value

a Profile object with list structure.

Examples

# Put one unique Scholar ID from Google Scholar
r <- tinyscholar("FvNp0NkAAAAJ")
#> Using cache directory: /tmp/RtmpNM22mn/tinyscholar
#> Cannot find cache file /tmp/RtmpNM22mn/tinyscholar/unsorted_2022-08-09_FvNp0NkAAAAJ.rds
#> Try quering data from server: hiplot
#> Timeout/error when use hiplot server. Switch to use the server: cse.
#> Save data to cache file /tmp/RtmpNM22mn/tinyscholar/unsorted_2022-08-09_FvNp0NkAAAAJ.rds
#> Done
r
#> $publications
#>                                                                                                                                              title
#> 1                APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer
#> 2                                                        Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction
#> 3                                                           Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers, and Therapeutic Strategy
#> 4                             The predictive power of tumor mutational burden in lung cancer immunotherapy response is influenced by patients' sex
#> 5       The UCSCXenaTools R package: a toolkit for accessing genomics data from UCSC Xena platform, from cancer multi-omics to single-cell RNA-seq
#> 6           Copy number signature analysis tool and its application in prostate cancer reveals distinct mutational processes and clinical outcomes
#> 7                                                                      UCSCXenaShiny: an R/CRAN package for interactive analysis of UCSC Xena data
#> 8                                               Copy number signature analyses in prostate cancer reveal distinct etiologies and clinical outcomes
#> 9                                                                                         Ras downstream effector GGCT alleviates oncogenic stress
#> 10                                                Sigflow: an automated and comprehensive pipeline for cancer genome mutational signature analysis
#> 11                                    Hiplot: A comprehensive and easy-to-use web service boosting publication-ready biomedical data visualization
#> 12                                                    Pan-cancer noncoding genomic analysis identifies functional CDC20 promoter mutation hotspots
#> 13                                                    Can tumor mutational burden determine the most effective treatment for lung cancer patients?
#> 14            Ggct (&#947;&#8208;glutamyl cyclotransferase) plays an important role in erythrocyte antioxidant defense and red blood cell survival
#> 15                                                   Association of CSMD1 with Tumor Mutation Burden and Other Clinical Outcomes in Gastric Cancer
#> 16                                                                           Revisiting neoantigen depletion signal in the untreated cancer genome
#> 17 Deciphering clonal dynamics and metastatic routines in a rare patient of synchronous triple-primary tumors and multiple metastases with MPTevol
#> 18                                                                        Quantification of neoantigen-mediated immunoediting in cancer evolution.
#> 19                                                                                      Onlinemeta: A Web Serve For Meta-Analysis Based On R-shiny
#> 20                                                              Pan-cancer quantification of neoantigen-mediated immunoediting in cancer evolution
#>                                                                        authors
#> 1                                                  S Wang, M Jia, Z He, XS Liu
#> 2                                           S Wang, Z He, X Wang, H Li, XS Liu
#> 3                                                    S Wang, LA Cowley, XS Liu
#> 4                                          S Wang, J Zhang, Z He, K Wu, XS Liu
#> 5                                                               S Wang, XS Liu
#> 6                S Wang, H Li, M Song, Z Tao, T Wu, Z He, X Zhao, K Wu, XS Liu
#> 7       S Wang, Y Xiong, L Zhao, K Gu, Y Li, F Zhao, J Li, M Wang, H Wang, ...
#> 8                S Wang, H Li, M Song, Z He, T Wu, X Wang, Z Tao, K Wu, XS Liu
#> 9           Z He, S Wang, Y Shao, J Zhang, X Wu, Y Chen, J Hu, F Zhang, XS Liu
#> 10                                                 S Wang, Z Tao, T Wu, XS Liu
#> 11 J Li, B Miao, S Wang, W Dong, H Xu, C Si, W Wang, S Duan, J Lou, Z Bao, ...
#> 12       Z He, T Wu, S Wang, J Zhang, X Sun, Z Tao, X Zhao, H Li, K Wu, XS Liu
#> 13                       S Wang, Z He, X Wang, H Li, T Wu, X Sun, K Wu, XS Liu
#> 14                    Z He, X Sun, S Wang, D Bai, X Zhao, Y Han, P Hao, XS Liu
#> 15       X Wang, S Wang, Y Han, M Xu, P Li, M Ke, Z Teng, P Huang, Z Diao, ...
#> 16                             S Wang, X Wang, T Wu, Z He, H Li, X Sun, XS Liu
#> 17          Q Chen, QN Wu, YM Rong, S Wang, Z Zuo, L Bai, B Zhang, S Yuan, ...
#> 18      T Wu, G Wang, X Wang, S Wang, X Zhao, C Wu, W Ning, Z Tao, F Chen, ...
#> 19                                 Y Yi, A Lin, C Zhou, J Zhang, S Wang, P Luo
#> 20      T Wu, G Wang, X Wang, S Wang, X Zhao, C Wu, W Ning, Z Tao, F Chen, ...
#>                                                        venue citations year
#> 1                          Oncogene 37 (29), 3924-3936, 2018       144 2018
#> 2                                                eLife, 2019       133 2019
#> 3                              Molecules 24 (18), 3214, 2019        84 2019
#> 4  International journal of cancer 145 (10), 2840-2849, 2019        47 2019
#> 5         Journal of Open Source Software 4 (40), 1627, 2019        29 2019
#> 6                       PLoS genetics 17 (5), e1009557, 2021        21 2021
#> 7                       Bioinformatics 38 (2), 527-529, 2022        18 2022
#> 8                                              medRxiv, 2020         8 2020
#> 9                                 Iscience 19, 256-266, 2019         8 2019
#> 10                   Bioinformatics 37 (11), 1590-1592, 2020         6 2020
#> 11                                             bioRxiv, 2022         4 2022
#> 12                             Iscience 24 (4), 102285, 2021         2 2021
#> 13                 Lung Cancer Management 8 (4), LMT21, 2019         2 2019
#> 14     British Journal of Haematology 195 (2), 267-275, 2021         1 2021
#> 15  International Journal of General Medicine 14, 8293, 2021         1 2021
#> 16                                             bioRxiv, 2020         1 2020
#> 17                         Briefings in Bioinformatics, 2022         0 2022
#> 18                                     Cancer Research, 2022         0 2022
#> 19                                             bioRxiv, 2022         0 2022
#> 20                                             bioRxiv, 2022         0 2022
#> 
#> $citations
#>    when count
#> 1 total   509
#> 2  2018     2
#> 3  2019    36
#> 4  2020   117
#> 5  2021   195
#> 6  2022   154
#> 
#> attr(,"class")
#> [1] "ScholarProfile" "list"          
if (!is.null(r)) {
  tb <- scholar_table(r)
  tb$citations
  tb$publications
  pl <- scholar_plot(r)
  pl$citations
  pl$publications
}