王诗翔
- 地址:上海市浦东新区上海科技大学生命学院L楼A406
- 工作邮箱:wangshx@shanghaitech.edu.cn
- 个人邮箱:w_shixiang@163.com 或 shixiang1994wang@gmail.com
- 个人网站:https://shixiangwang.github.io
教育经历
2016.09 ~ 现在
上海科技大学,生物学专业,肿瘤信息学方向博士在读2012.09 ~ 2016.07
电子科技大学,生物医学工程专业,工学学士
教学经历
助教:
- 细胞生物学II课程(研究生,一学期)
教学:
- 贵州支教(小学生,半个月)
专业技能
- 编程水平:
- R \(\star\star\star\star\star\)
- Shell \(\star\star\star\)
- Python \(\star\star\star\)
- Golang \(\star\star\)
- 数据分析。我有使用 R 和 Shell 进行数据预处理、数据清洗和数据解释相关的丰富经验。
- 统计。我对于使用 R 进行统计建模和可视化也相当有经验。
- 软件包与流程开发。我精通纯 R 包的开发,也有一些 Python 包和 Shiny 开发经验。我能够组合多种不同的编程语言或技能创建分析流程。
- 基因组学分析。我有能力处理原始基因组学数据并进行分析。在体细胞变异检测(包括 SNV、INDEL 和 CNV)、差异表达分析、富集分析方面有一些实际经验。使用过像 samtools、fastqc、bwa、VEP、bedtools、limma 等一些组学工具。
- 临床分析。我了解领域文献常见的临床指标,知道如何构建生存分析模型并解释结果。
- 机器学习。我了解机器学习(包括深度学习),掌握一些基本技术,像聚类、回归预测、分类预测,有将机器学习应用到项目中的能力。
- 写作。我喜欢用 Markdown 和 R Markdown 等现代书写工具写作,并通过很多方式分享我的知识(如 GitHub Issue、简书和微信公众号)
开发
- sigminer (https://cran.r-project.org/package=sigminer): mutational signature analysis and visualization in R.
- ezcox (https://cran.r-project.org/package=ezcox): operate a batch of univariate or multivariate Cox models and return tidy result.
- DoAbsolute (https://github.com/ShixiangWang/DoAbsolute): automate ABSOLUTE calling for multiple samples in parallel way.
- metawho (https://cran.r-project.org/package=metawho): simple R implementation of “Meta-analytical method to Identify Who Benefits Most from Treatments”.
- UCSCXenaTools (https://cran.r-project.org/package=UCSCXenaTools): an R package for downloading and exploring data from UCSC Xena data hubs.
- UCSCXenaShiny (https://cran.r-project.org/package=UCSCXenaShiny): a Shiny based on UCSCXenaTools.
- contribution (https://cran.r-project.org/package=contribution): generate contribution table for credit assignment in a project.
- loon (https://pypi.org/project/loon/): a Python toolkit for operating remote host based on SSH.
- sync-deploy (https://github.com/ShixiangWang/sync-deploy): a Shell toolkit for deploying script/command task on a remote host, including up/download files, run script and more.
关于我更多的开发活动和贡献也在 github.com/ShixiangWang 上查看。
出版物
总引用:106 (数据源:谷歌学术,更新时间:2020-08-02)
- Wang, S., He, Z., Wang, X., Li, H., & Liu, X. S. (2019). Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. eLife, 8, e49020. https://doi.org/10.7554/eLife.49020 (PDF)
- Wang, S., He, Z., Wang, X., Li, H., Wu, T., Sun, X., … & Liu, X. S. (2019). Can tumor mutational burden determine the most effective treatment for lung cancer patients?. Lung Cancer Management. https://doi.org/10.2217/lmt-2019-0013 (PDF)
- Wang, S., Cowley, L. A., & Liu, X. S. (2019). Sex differences in Cancer immunotherapy efficacy, biomarkers, and therapeutic strategy. Molecules, 24(18), 3214. (PDF)
- Wang, S. & Liu, X. S. (2019). The UCSCXenaTools R package: a toolkit for accessing genomics data from UCSC Xena platform, from cancer multi-omics to single-cell RNA-seq. Journal of Open Source Software, 4(40), 1627, https://doi.org/10.21105/joss.01627 (PDF)
- He, Z., Wang, S., Shao, Y., Zhang, J., Wu, X., Chen, Y., … & Liu, X. S. (2019). Ras downstream effector GGCT alleviates oncogenic stress. iScience. (PDF)
- Wang, S., Zhang, J., He, Z., Wu, K., & Liu, X. S. (2019). The predictive power of tumor mutational burden in lung cancer immunotherapy response is influenced by patients’ sex. International journal of cancer, 145(10), 2840-2849. (PDF)
- Wang, S., Jia, M., He, Z., & Liu, X. S. (2018). APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer. Oncogene, 37(29), 3924-3936. (PDF)