deft_do.Rd
'deft' method is a meta-analytical approach to pool conclusion from multiple studies. More details please see references.
deft_do(prepare, group_level, method = "FE")
prepare | a result |
---|---|
group_level | level of subgroup, should be a character vector with
length 2 and the reference should put in the first. For example, if you
have 'Male' and 'Female' groups and want compare 'Female' with 'Male', then
should set |
method | character string specifying whether a fixed- or a random/mixed-effects model should be fitted. A fixed-effects model (with or without moderators) is fitted when using |
a list
which class is 'deft'.
About model fit, please see metafor::rma()
.
Fisher, David J., et al. "Meta-analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach?." bmj 356 (2017): j573.
Wang, Shixiang, et al. "The predictive power of tumor mutational burden in lung cancer immunotherapy response is influenced by patients' sex." International journal of cancer (2019).
#> $all #> $all$data #> entry trial subgroup hr ci.lb ci.ub ni conf_q #> 1 Rizvi 2015-Male Rizvi 2015 Male 0.30 0.09 1.00 16 1.959964 #> 2 Rizvi 2015-Female Rizvi 2015 Female 0.11 0.02 0.56 18 1.959964 #> 3 Rizvi 2018-Male Rizvi 2018 Male 1.25 0.82 1.90 118 1.959964 #> 4 Rizvi 2018-Female Rizvi 2018 Female 0.63 0.42 0.95 122 1.959964 #> 5 Hellmann 2018-Male Hellmann 2018 Male 0.90 0.41 1.99 37 1.959964 #> 6 Hellmann 2018-Female Hellmann 2018 Female 0.28 0.12 0.67 38 1.959964 #> yi sei #> 1 -1.2039728 0.6142831 #> 2 -2.2072749 0.8500678 #> 3 0.2231436 0.2143674 #> 4 -0.4620355 0.2082200 #> 5 -0.1053605 0.4030005 #> 6 -1.2729657 0.4387290 #> #> $all$model #> #> Fixed-Effects Model (k = 6) #> #> Test for Heterogeneity: #> Q(df = 5) = 18.8865, p-val = 0.0020 #> #> Model Results: #> #> estimate se zval pval ci.lb ci.ub #> -0.3207 0.1289 -2.4883 0.0128 -0.5733 -0.0681 * #> #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> #> #> $subgroup #> $subgroup$data #> trial hr ci.lb ci.ub ni conf_q yi sei #> 1 Rizvi 2015 0.3666667 0.0469397 2.8641945 34 1.959964 -1.003302 1.0487893 #> 2 Rizvi 2018 0.5040000 0.2805772 0.9053338 240 1.959964 -0.685179 0.2988460 #> 3 Hellmann 2018 0.3111111 0.0967900 1.0000013 75 1.959964 -1.167605 0.5957285 #> #> $subgroup$model #> #> Fixed-Effects Model (k = 3) #> #> Test for Heterogeneity: #> Q(df = 2) = 0.5657, p-val = 0.7536 #> #> Model Results: #> #> estimate se zval pval ci.lb ci.ub #> -0.7956 0.2589 -3.0737 0.0021 -1.3030 -0.2883 ** #> #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> #> #> attr(,"class") #> [1] "deft"