Filter ezcox
filter_ezcox(x, levels = "auto", type = c("both", "contrast", "ref"))
a ezcox
object from ezcox()
.
levels to filter, default is 'auto', it will filter all control variables.
default is 'both' for filtering both contrast level and reference level. It can also be 'contrast' for filtering only contrast level and 'ref' for filtering only reference level.
a ezcox
object
library(survival)
lung$ph.ecog <- factor(lung$ph.ecog)
zz <- ezcox(lung, covariates = c("sex", "age"), controls = "ph.ecog")
#> => Processing variable sex
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
#> => Processing variable age
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
zz
#> # A tibble: 8 × 12
#> Variable is_cont…¹ contr…² ref_l…³ n_con…⁴ n_ref beta HR lower…⁵ upper…⁶
#> <chr> <lgl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sex FALSE sex sex 228 228 -0.545 0.58 0.417 0.806
#> 2 sex TRUE 1 0 113 63 0.418 1.52 1.03 2.25
#> 3 sex TRUE 2 0 50 63 0.947 2.58 1.66 4.01
#> 4 sex TRUE 3 0 1 63 2.05 7.76 1.04 58
#> 5 age FALSE age age 228 228 0.0108 1.01 0.992 1.03
#> 6 age TRUE 1 0 113 63 0.359 1.43 0.969 2.11
#> 7 age TRUE 2 0 50 63 0.857 2.36 1.5 3.7
#> 8 age TRUE 3 0 1 63 2.11 8.23 1.09 61.8
#> # … with 2 more variables: p.value <dbl>, global.pval <dbl>, and abbreviated
#> # variable names ¹is_control, ²contrast_level, ³ref_level, ⁴n_contrast,
#> # ⁵lower_95, ⁶upper_95
filter_ezcox(zz)
#> # A tibble: 2 × 12
#> Variable is_cont…¹ contr…² ref_l…³ n_con…⁴ n_ref beta HR lower…⁵ upper…⁶
#> <chr> <lgl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sex FALSE sex sex 228 228 -0.545 0.58 0.417 0.806
#> 2 age FALSE age age 228 228 0.0108 1.01 0.992 1.03
#> # … with 2 more variables: p.value <dbl>, global.pval <dbl>, and abbreviated
#> # variable names ¹is_control, ²contrast_level, ³ref_level, ⁴n_contrast,
#> # ⁵lower_95, ⁶upper_95
filter_ezcox(zz, c("0", "2"))
#> Filtering control levels in 'both' mode:
#> 0, 2
#> # A tibble: 2 × 12
#> Variable is_cont…¹ contr…² ref_l…³ n_con…⁴ n_ref beta HR lower…⁵ upper…⁶
#> <chr> <lgl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sex FALSE sex sex 228 228 -0.545 0.58 0.417 0.806
#> 2 age FALSE age age 228 228 0.0108 1.01 0.992 1.03
#> # … with 2 more variables: p.value <dbl>, global.pval <dbl>, and abbreviated
#> # variable names ¹is_control, ²contrast_level, ³ref_level, ⁴n_contrast,
#> # ⁵lower_95, ⁶upper_95
filter_ezcox(zz, c("0", "2"), type = "contrast")
#> Filtering control levels in 'contrast' mode:
#> 0, 2
#> # A tibble: 6 × 12
#> Variable is_cont…¹ contr…² ref_l…³ n_con…⁴ n_ref beta HR lower…⁵ upper…⁶
#> <chr> <lgl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sex FALSE sex sex 228 228 -0.545 0.58 0.417 0.806
#> 2 sex TRUE 1 0 113 63 0.418 1.52 1.03 2.25
#> 3 sex TRUE 3 0 1 63 2.05 7.76 1.04 58
#> 4 age FALSE age age 228 228 0.0108 1.01 0.992 1.03
#> 5 age TRUE 1 0 113 63 0.359 1.43 0.969 2.11
#> 6 age TRUE 3 0 1 63 2.11 8.23 1.09 61.8
#> # … with 2 more variables: p.value <dbl>, global.pval <dbl>, and abbreviated
#> # variable names ¹is_control, ²contrast_level, ³ref_level, ⁴n_contrast,
#> # ⁵lower_95, ⁶upper_95
t <- filter_ezcox(zz, c("0", "2"), type = "ref")
#> Filtering control levels in 'ref' mode:
#> 0, 2
t
#> # A tibble: 2 × 12
#> Variable is_cont…¹ contr…² ref_l…³ n_con…⁴ n_ref beta HR lower…⁵ upper…⁶
#> <chr> <lgl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sex FALSE sex sex 228 228 -0.545 0.58 0.417 0.806
#> 2 age FALSE age age 228 228 0.0108 1.01 0.992 1.03
#> # … with 2 more variables: p.value <dbl>, global.pval <dbl>, and abbreviated
#> # variable names ¹is_control, ²contrast_level, ³ref_level, ⁴n_contrast,
#> # ⁵lower_95, ⁶upper_95