This function provides an unified interface to signature extractor
implemented in sigminer. If you determine a specific approach
,
please also read the documentation of corresponding extractor.
See "Arguments" part.
sig_unify_extract(
nmf_matrix,
range = 2:5,
nrun = 10,
approach = c("bayes_nmf", "repeated_nmf", "bootstrap_nmf", "sigprofiler"),
cores = 1L,
...
)
a matrix
used for NMF decomposition with rows indicate samples and columns indicate components.
signature number range, i.e. 2:5
.
the number of iteration to be performed to extract each signature number.
approach name.
"repeated_nmf" - sig_extract
"bayes_nmf" - sig_auto_extract
"bootstrap_nmf" - bp_extract_signatures
"sigprofiler" - sigprofiler
number of cores used for computation.
other parameters passing to signature extractor based
on the approach
setting.
Result dependent on the approach
setting.
# \donttest{
load(system.file("extdata", "toy_copynumber_tally_W.RData",
package = "sigminer", mustWork = TRUE
))
# Extract signatures
# It is same as sig_extract(cn_tally_W$nmf_matrix, 2, nrun = 1)
res <- sig_unify_extract(cn_tally_W$nmf_matrix, 2,
nrun = 1,
approach = "repeated_nmf"
)
#> NMF algorithm: 'brunet'
#> NMF seeding method: random
#> Iterations: 0/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 1/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 50/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 100/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 150/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 200/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 250/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 300/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 350/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 400/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
Iterations: 450/2000
#> DONE (converged at 470/2000 iterations)
# Auto-extract signatures based on bayesian NMF
res2 <- sig_unify_extract(cn_tally_W$nmf_matrix,
nrun = 1,
approach = "bayes_nmf"
)
#> Set 5 as the initial signature number
#> Select Run 1, which K = 2 as best solution.
# }