Chapter 2 COSMIC Signature Identification

In this chapter, we will introduce how to identify COSMIC signatures from records of variant calling data. The COSMIC signatures include three type of signatures: SBS, DBS and ID (short for INDEL).

The signature identification procedure has been divided into 3 steps:

  1. Read mutation data.
  2. Tally components: for SBS, it means classifying SBS records into 96 components (the most common case) and generate sample matrix.
  3. Extract signatures: estimate signature number and identify signatures.

2.1 Read Data

Make sure library(sigminer) before running the following code.

The input data should be in VCF, MAF format.

  • For VCF, it can only be VCF file paths.
  • For MAF, it can be either a MAF file or a data.frame.

MAF format is the standard way to represent small-scale variants in Sigminer. There is a popular R/Bioconductor package maftools (Mayakonda et al. 2018) for analyzing MAF data. It provides an R class MAF to represent MAF format data.

2.1.1 VCF as input

If you use VCF files as input, you can use read_vcf() to read multiple VCF files as a MAF object.

vcfs <- list.files(system.file("extdata", package = "sigminer"), "*.vcf", full.names = TRUE)
maf <- read_vcf(vcfs)
#> Reading file(s): /Users/wsx/Library/R/sigminer/extdata/test1.vcf, /Users/wsx/Library/R/sigminer/extdata/test2.vcf, /Users/wsx/Library/R/sigminer/extdata/test3.vcf
#> It seems /Users/wsx/Library/R/sigminer/extdata/test2.vcf has no normal VCF header, try parsing without header.
#> Annotating Variant Type...
#> Downloading https://zenodo.org/record/4480398/files/human_hg19_gene_info.rds to /Users/wsx/Library/R/sigminer/extdata/human_hg19_gene_info.rds
#> Annotating mutations to first matched gene based on database /Users/wsx/Library/R/sigminer/extdata/human_hg19_gene_info.rds...
#> Transforming into a MAF object...
#> -Validating
#> --Non MAF specific values in Variant_Classification column:
#>   Unknown
#> -Summarizing
#> -Processing clinical data
#> --Missing clinical data
#> -Finished in 0.038s elapsed (0.036s cpu)
maf <- read_vcf(vcfs, keep_only_pass = FALSE)
#> Reading file(s): /Users/wsx/Library/R/sigminer/extdata/test1.vcf, /Users/wsx/Library/R/sigminer/extdata/test2.vcf, /Users/wsx/Library/R/sigminer/extdata/test3.vcf
#> It seems /Users/wsx/Library/R/sigminer/extdata/test2.vcf has no normal VCF header, try parsing without header.
#> Annotating Variant Type...
#> Annotating mutations to first matched gene based on database /Users/wsx/Library/R/sigminer/extdata/human_hg19_gene_info.rds...
#> Transforming into a MAF object...
#> -Validating
#> --Non MAF specific values in Variant_Classification column:
#>   Unknown
#> -Summarizing
#> -Processing clinical data
#> --Missing clinical data
#> -Finished in 0.030s elapsed (0.029s cpu)

2.1.2 MAF as input

MAF format is the most recommended input, you can provides it either as a file or as a data.frame.

Typically, you can obtain the data in the following ways:

  1. You get multiple VCF files and convert them into a MAF file (vcf2maf is the most used tool for conversion).
  2. You get a MAF file from a reference or a public data portal, e.g., cBioPortal or GDC portal.
  3. You get a EXCEL file providing MAF-like data from a reference, you should read the data firstly (with readxl::read_excel()) and then construct a data.frame providing necessary columns.

Once a MAF file or a MAF-like data.frame is ready, you can read/convert it as a MAF object with read_maf(). Here TCGA LAML dataset is used as an example:

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools", mustWork = TRUE)
laml <- read_maf(maf = laml.maf)
#> -Reading
#> -Validating
#> -Silent variants: 475 
#> -Summarizing
#> -Processing clinical data
#> --Missing clinical data
#> -Finished in 0.264s elapsed (0.238s cpu)
laml
#> An object of class  MAF 
#>                    ID          summary  Mean Median
#>  1:        NCBI_Build               37    NA     NA
#>  2:            Center genome.wustl.edu    NA     NA
#>  3:           Samples              193    NA     NA
#>  4:            nGenes             1241    NA     NA
#>  5:   Frame_Shift_Del               52 0.269      0
#>  6:   Frame_Shift_Ins               91 0.472      0
#>  7:      In_Frame_Del               10 0.052      0
#>  8:      In_Frame_Ins               42 0.218      0
#>  9: Missense_Mutation             1342 6.953      7
#> 10: Nonsense_Mutation              103 0.534      0
#> 11:       Splice_Site               92 0.477      0
#> 12:             total             1732 8.974      9

The laml is a MAF object. The MAF class is exported from maftools to sigminer. So laml can be directly use functions provided by maftools.

As a MAF object, the mutation records are stored in slot data and maf.silent.

head(laml@data)
#>    Hugo_Symbol Entrez_Gene_Id           Center NCBI_Build Chromosome Start_Position
#> 1:      ABCA10          10349 genome.wustl.edu         37         17       67170917
#> 2:       ABCA4             24 genome.wustl.edu         37          1       94490594
#> 3:      ABCB11           8647 genome.wustl.edu         37          2      169780250
#> 4:       ABCC3           8714 genome.wustl.edu         37         17       48760974
#> 5:       ABCF1             23 genome.wustl.edu         37          6       30554429
#> 6:       ABCG4          64137 genome.wustl.edu         37         11      119031351
#>    End_Position Strand Variant_Classification Variant_Type Reference_Allele Tumor_Seq_Allele1
#> 1:     67170917      +            Splice_Site          SNP                T                 T
#> 2:     94490594      +      Missense_Mutation          SNP                C                 C
#> 3:    169780250      +      Missense_Mutation          SNP                G                 G
#> 4:     48760974      +      Missense_Mutation          SNP                C                 C
#> 5:     30554429      +      Missense_Mutation          SNP                G                 G
#> 6:    119031351      +      Missense_Mutation          SNP                A                 A
#>    Tumor_Seq_Allele2 Tumor_Sample_Barcode Protein_Change i_TumorVAF_WU i_transcript_name
#> 1:                 C         TCGA-AB-2988        p.K960R      45.66000       NM_080282.3
#> 2:                 T         TCGA-AB-2869       p.R1517H      38.12000       NM_000350.2
#> 3:                 A         TCGA-AB-3009       p.A1283V      46.97218       NM_003742.2
#> 4:                 T         TCGA-AB-2887       p.P1271S      56.41000       NM_003786.1
#> 5:                 A         TCGA-AB-2920        p.G658S      40.95000    NM_001025091.1
#> 6:                 G         TCGA-AB-2934        p.Y567C      32.84000       NM_022169.1
head(laml@maf.silent)
#>    Hugo_Symbol Entrez_Gene_Id           Center NCBI_Build Chromosome Start_Position
#> 1:      ABCC11          85320 genome.wustl.edu         37         16       48244997
#> 2:        ACAN            176 genome.wustl.edu         37         15       89401084
#> 3:       ACAT1             38 genome.wustl.edu         37         11      108009744
#> 4:       ACCN2             41 genome.wustl.edu         37         12       50452780
#> 5:       ACTA2             59 genome.wustl.edu         37         10       90695109
#> 6:       ACTL9         284382 genome.wustl.edu         37         19        8808551
#>    End_Position Strand Variant_Classification Variant_Type Reference_Allele Tumor_Seq_Allele1
#> 1:     48244997      +                 Silent          SNP                G                 G
#> 2:     89401084      +                 Silent          SNP                C                 C
#> 3:    108009744      +                 Silent          SNP                T                 T
#> 4:     50452780      +                 Silent          SNP                C                 C
#> 5:     90695109      +                 Silent          SNP                C                 C
#> 6:      8808551      +                 Silent          SNP                G                 G
#>    Tumor_Seq_Allele2 Tumor_Sample_Barcode Protein_Change i_TumorVAF_WU i_transcript_name
#> 1:                 A         TCGA-AB-2830        p.I490I    34.2700000       NM_032583.3
#> 2:                 T         TCGA-AB-2898       p.S1756S    38.3000000       NM_013227.2
#> 3:                 G         TCGA-AB-2887        p.T185T    49.0400000       NM_000019.3
#> 4:                 G         TCGA-AB-3009         p.L77L    48.1000000       NM_020039.2
#> 5:                 T         TCGA-AB-2973        p.P335P     0.2012072       NM_001613.1
#> 6:                 A         TCGA-AB-2936        p.F167F    46.1500000       NM_178525.3

The data slot contains non-silent variants, and the maf.silent slot contains silent variants. Default uses Variant Classifications with High/Moderate variant consequences as non-silent variants. http://asia.ensembl.org/Help/Glossary?id=535: “Frame_Shift_Del,” “Frame_Shift_Ins,” “Splice_Site,” “Translation_Start_Site,”“Nonsense_Mutation,” “Nonstop_Mutation,” “In_Frame_Del,”“In_Frame_Ins,” “Missense_Mutation” (see ?read_maf). If you want to change, please set vc_nonSyn option.

Other slots in MAF object are summary data either by sample or gene/variant type etc.

slotNames(laml)
#> [1] "data"                           "variants.per.sample"           
#> [3] "variant.type.summary"           "variant.classification.summary"
#> [5] "gene.summary"                   "summary"                       
#> [7] "maf.silent"                     "clinical.data"

Acute myeloid leukemia is not a good object to study mutational signatures due to low mutation burden, we will use a subset of TCGA breast cohort as for illustration of the following analyses.

Anand Mayakonda has already stored whole TCGA mutation data as MAF objects in TCGAmutations package. Here I will load the TCGA BRCA cohort and create a sub-cohort with 100 tumors.

library(TCGAmutations)
#> Loading required package: maftools
#> Loading required package: data.table
#> data.table 1.14.0 using 1 threads (see ?getDTthreads).  Latest news: r-datatable.com
#> **********
#> This installation of data.table has not detected OpenMP support. It should still work but in single-threaded mode.
#> This is a Mac. Please read https://mac.r-project.org/openmp/. Please engage with Apple and ask them for support. Check r-datatable.com for updates, and our Mac instructions here: https://github.com/Rdatatable/data.table/wiki/Installation. After several years of many reports of installation problems on Mac, it's time to gingerly point out that there have been no similar problems on Windows or Linux.
#> **********
#> 
#> Attaching package: 'data.table'
#> The following object is masked from 'package:sigminer':
#> 
#>     :=
knitr::kable(tcga_available())
Study_Abbreviation Study_Name MC3 Firehose
ACC Adrenocortical_carcinoma 92 62 [dx.doi.org/10.7908/C1610ZNC]
BLCA Bladder_Urothelial_Carcinoma 411 395 [dx.doi.org/10.7908/C1MW2GGF]
BRCA Breast_invasive_carcinoma 1020 978 [dx.doi.org/10.7908/C1TB167Z]
CESC Cervical_squamous_cell_carcinoma_and_endocervical_adenocarcinoma 289 194 [dx.doi.org/10.7908/C1MG7NV6]
CHOL Cholangiocarcinoma 36 35 [dx.doi.org/10.7908/C1K936V8]
COAD Colon_adenocarcinoma 404 367 [dx.doi.org/10.7908/C1DF6QJD]
DLBC Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma 37 48 [dx.doi.org/10.7908/C1X066DK]
ESCA Esophageal_carcinoma 184 185 [dx.doi.org/10.7908/C1BV7FZC]
GBM Glioblastoma_multiforme 390 283 [dx.doi.org/10.7908/C1XG9QGN]
HNSC Head_and_Neck_squamous_cell_carcinoma 507 511 [dx.doi.org/10.7908/C18C9VM5]
KICH Kidney_Chromophobe 66 66 [dx.doi.org/10.7908/C1765DQK]
KIRC Kidney_renal_clear_cell_carcinoma 369 476 [dx.doi.org/10.7908/C10864RM]
KIRP Kidney_renal_papillary_cell_carcinoma 281 282 [dx.doi.org/10.7908/C19C6WTF]
LAML Acute_Myeloid_Leukemia 140 193 [dx.doi.org/10.7908/C1D21X2X]
LGG Brain_Lower_Grade_Glioma 511 516 [dx.doi.org/10.7908/C1MC8ZDF]
LIHC Liver_hepatocellular_carcinoma 363 373 [dx.doi.org/10.7908/C128070B]
LUAD Lung_adenocarcinoma 515 533 [dx.doi.org/10.7908/C17P8XT3]
LUSC Lung_squamous_cell_carcinoma 485 178 [dx.doi.org/10.7908/C1X34WXV]
MESO Mesothelioma 82 NA
OV Ovarian_serous_cystadenocarcinoma 411 466 [dx.doi.org/10.7908/C1736QC5]
PAAD Pancreatic_adenocarcinoma 177 126 [dx.doi.org/10.7908/C1513XNS]
PCPG Pheochromocytoma_and_Paraganglioma 179 179 [dx.doi.org/10.7908/C13T9GN0]
PRAD Prostate_adenocarcinoma 497 498 [dx.doi.org/10.7908/C1Z037MV]
READ Rectum_adenocarcinoma 149 122 [dx.doi.org/10.7908/C1S46RDB]
SARC Sarcoma 236 247 [dx.doi.org/10.7908/C137785M]
SKCM Skin_Cutaneous_Melanoma 466 290 [dx.doi.org/10.7908/C1J67GCG]
STAD Stomach_adenocarcinoma 439 393 [dx.doi.org/10.7908/C1C828SM]
TGCT Testicular_Germ_Cell_Tumors 129 147 [dx.doi.org/10.7908/C1S1820D]
THCA Thyroid_carcinoma 492 496 [dx.doi.org/10.7908/C16W99KN]
THYM Thymoma 123 120 [dx.doi.org/10.7908/C15T3JZ6]
UCEC Uterine_Corpus_Endometrial_Carcinoma 530 248 [dx.doi.org/10.7908/C1C828T2]
UCS Uterine_Carcinosarcoma 57 57 [dx.doi.org/10.7908/C1PC31W8]
UVM Uveal_Melanoma 80 80 [dx.doi.org/10.7908/C1S1821V]
Unknown Samples_I_couldnt_figure_out_the_source 77 NA
set.seed(1234)
brca <- tcga_load("BRCA")
brca <- maftools::subsetMaf(brca,
  tsb = as.character(sample(brca@variants.per.sample$Tumor_Sample_Barcode, 100))
)
saveRDS(brca, file = "data/brca.rds")

Here we save this cohort to let user can also run the examples without installing package TCGAmutations.

brca <- readRDS("data/brca.rds")

2.2 Tally Components

2.2.1 The most common 96 components

According to 3-nucleotide context (mutated base, 5’ and 3’ adjacent bases) and base complementary pairing principle, we can divide all SBS mutations into 96 mutation types. We call each mutation type as a component here.

This classification is based the six substitution subtypes: C>A, C>G, C>T, T>A, T>C, and T>G (all substitutions are referred to by the pyrimidine of the mutated Watson—Crick base pair). Further, each of the substitutions is examined by incorporating information on the bases immediately 5’ and 3’ to each mutated base generating 96 possible mutation types (6 types of substitution x 4 types of 5’ base x 4 types of 3’ base).

The illustration of 96 components, fig source: https://en.wikipedia.org/wiki/Mutational_signatures

Figure 2.1: The illustration of 96 components, fig source: https://en.wikipedia.org/wiki/Mutational_signatures

We tally components in each sample, and generate a sample-by-component matrix.

mt_tally <- sig_tally(
  brca,
  ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
  useSyn = TRUE
)
#> ℹ [2021-05-18 23:15:43]: Started.
#> 
#> Attaching package: 'S4Vectors'
#> The following objects are masked from 'package:data.table':
#> 
#>     first, second
#> The following object is masked from 'package:NMF':
#> 
#>     nrun
#> The following object is masked from 'package:pkgmaker':
#> 
#>     new2
#> The following object is masked from 'package:base':
#> 
#>     expand.grid
#> 
#> Attaching package: 'IRanges'
#> The following object is masked from 'package:data.table':
#> 
#>     shift
#> 
#> Attaching package: 'Biostrings'
#> The following object is masked from 'package:base':
#> 
#>     strsplit
#> ✓ [2021-05-18 23:15:50]: Reference genome loaded.
#> ✓ [2021-05-18 23:15:50]: Variants from MAF object queried.
#> ✓ [2021-05-18 23:15:50]: Chromosome names checked.
#> ✓ [2021-05-18 23:15:50]: Sex chromosomes properly handled.
#> ✓ [2021-05-18 23:15:50]: Only variants located in standard chromosomes (1:22, X, Y, M/MT) are kept.
#> ✓ [2021-05-18 23:15:50]: Variant start and end position checked.
#> ✓ [2021-05-18 23:15:50]: Variant data for matrix generation preprocessed.
#> ℹ [2021-05-18 23:15:50]: SBS matrix generation - start.
#> ℹ [2021-05-18 23:15:50]: Extracting 5' and 3' adjacent bases.
#> ℹ [2021-05-18 23:15:52]: Extracting +/- 20bp around mutated bases for background C>T estimation.
#> ℹ [2021-05-18 23:15:53]: Estimating APOBEC enrichment scores.
#> ℹ [2021-05-18 23:15:53]: Performing one-way Fisher's test for APOBEC enrichment.
#> ✓ [2021-05-18 23:15:53]: APOBEC related mutations are enriched in 28% of samples (APOBEC enrichment score > 2; 28 of 100 samples)
#> ℹ [2021-05-18 23:15:53]: Creating SBS sample-by-component matrices.
#> ✓ [2021-05-18 23:15:53]: SBS-6 matrix created.
#> ✓ [2021-05-18 23:15:53]: SBS-96 matrix created.
#> ✓ [2021-05-18 23:15:53]: SBS-1536 matrix created.
#> ℹ [2021-05-18 23:15:53]: Return SBS-96 as major matrix.
#> ✓ [2021-05-18 23:15:53]: Done.
#> ℹ [2021-05-18 23:15:53]: 10.073 secs elapsed.

Here set useSyn = TRUE to include all variant records in MAF object to generate sample matrix.

mt_tally$nmf_matrix[1:5, 1:5]
#>                              A[T>C]A C[T>C]A G[T>C]A T[T>C]A A[C>T]A
#> TCGA-A1-A0SH-01A-11D-A099-09       0       0       1       1       0
#> TCGA-A2-A04N-01A-11D-A10Y-09       0       0       0       1       2
#> TCGA-A2-A0CP-01A-11W-A050-09       0       0       0       0       0
#> TCGA-A2-A0EP-01A-52D-A22X-09       0       0       1       0       0
#> TCGA-A2-A0EV-01A-11W-A050-09       0       0       1       0       0

We use notion left[ref>mut]right to mark each component, e.g. C[T>G]A means a base T with 5’ adjacent base C and 3’ adjacent base A is mutated to base G.

2.2.2 Other Situations

Above we show the most common SBS classifications, there are other situations supported by sigminer, including other classifications for SBS records and other mutation types (DBS and ID). All situations about SBS, DBS and ID signatures are well documented in wiki of SigProfilerMatrixGenerator package.

2.2.2.1 Other SBS classifications

After calling sig_tally(), the most used matrix is stored in nmf_matrix, and all matrices generated by sigminer are stored in all_matrices.

str(mt_tally$all_matrices, max.level = 1)
#> List of 3
#>  $ SBS_6   : int [1:100, 1:6] 7 6 5 4 9 7 5 5 0 5 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_96  : int [1:100, 1:96] 0 0 0 0 0 0 1 2 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_1536: int [1:100, 1:1536] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2

If you add the strand classification, all matrices can be generated by sigminer will return.

mt_tally2 <- sig_tally(
  brca,
  ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
  useSyn = TRUE, add_trans_bias = TRUE
)
#> ℹ [2021-05-18 23:15:53]: Started.
#> ✓ [2021-05-18 23:15:53]: Reference genome loaded.
#> ✓ [2021-05-18 23:15:53]: Variants from MAF object queried.
#> ✓ [2021-05-18 23:15:53]: Chromosome names checked.
#> ✓ [2021-05-18 23:15:53]: Sex chromosomes properly handled.
#> ✓ [2021-05-18 23:15:53]: Only variants located in standard chromosomes (1:22, X, Y, M/MT) are kept.
#> ✓ [2021-05-18 23:15:53]: Variant start and end position checked.
#> ✓ [2021-05-18 23:15:53]: Variant data for matrix generation preprocessed.
#> ℹ [2021-05-18 23:15:53]: SBS matrix generation - start.
#> ℹ [2021-05-18 23:15:53]: Extracting 5' and 3' adjacent bases.
#> ℹ [2021-05-18 23:15:54]: Extracting +/- 20bp around mutated bases for background C>T estimation.
#> ℹ [2021-05-18 23:15:55]: Estimating APOBEC enrichment scores.
#> ℹ [2021-05-18 23:15:55]: Performing one-way Fisher's test for APOBEC enrichment.
#> ✓ [2021-05-18 23:15:55]: APOBEC related mutations are enriched in 28% of samples (APOBEC enrichment score > 2; 28 of 100 samples)
#> ℹ [2021-05-18 23:15:55]: Creating SBS sample-by-component matrices.
#> ✓ [2021-05-18 23:15:55]: SBS-6 matrix created.
#> ✓ [2021-05-18 23:15:55]: SBS-96 matrix created.
#> ✓ [2021-05-18 23:15:55]: SBS-1536 matrix created.
#> ✓ [2021-05-18 23:15:55]: SBS-24 (6x4) matrix created.
#> ✓ [2021-05-18 23:15:55]: SBS-384 (96x4) matrix created.
#> ✓ [2021-05-18 23:15:55]: SBS-6144 (1536x4) matrix created.
#> ℹ [2021-05-18 23:15:55]: Return SBS-192 as major matrix.
#> ✓ [2021-05-18 23:15:55]: Done.
#> ℹ [2021-05-18 23:15:55]: 2.189 secs elapsed.

str(mt_tally2$all_matrices, max.level = 1)
#> List of 7
#>  $ SBS_6   : int [1:100, 1:6] 7 6 5 4 9 7 5 5 0 5 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_24  : int [1:100, 1:24] 6 3 3 2 6 4 1 2 0 3 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_96  : int [1:100, 1:96] 0 0 0 0 0 0 1 2 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_192 : int [1:100, 1:192] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_384 : int [1:100, 1:384] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_1536: int [1:100, 1:1536] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_6144: int [1:100, 1:6144] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2

2.2.2.2 DBS and ID components

If you want to generate DBS or ID matrices, just modify the mode option.

mt_tally_DBS <- sig_tally(
  brca,
  ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
  useSyn = TRUE,
  mode = "DBS",
  add_trans_bias = TRUE
)
#> ℹ [2021-05-18 23:15:55]: Started.
#> ✓ [2021-05-18 23:15:55]: Reference genome loaded.
#> ✓ [2021-05-18 23:15:55]: Variants from MAF object queried.
#> ✓ [2021-05-18 23:15:55]: Chromosome names checked.
#> ✓ [2021-05-18 23:15:55]: Sex chromosomes properly handled.
#> ✓ [2021-05-18 23:15:55]: Only variants located in standard chromosomes (1:22, X, Y, M/MT) are kept.
#> ✓ [2021-05-18 23:15:55]: Variant start and end position checked.
#> ✓ [2021-05-18 23:15:55]: Variant data for matrix generation preprocessed.
#> ℹ [2021-05-18 23:15:55]: DBS matrix generation - start.
#> ℹ [2021-05-18 23:15:55]: Searching DBS records...
#> ✓ [2021-05-18 23:15:56]: Done.
#> ✓ [2021-05-18 23:15:57]: Reference sequences queried from genome.
#> ✓ [2021-05-18 23:15:57]: DBS-78 matrix created.
#> ✓ [2021-05-18 23:15:57]: DBS-1248 matrix created.
#> ✓ [2021-05-18 23:15:57]: DBS-186 matrix created.
#> ℹ [2021-05-18 23:15:57]: Return DBS-186 as major matrix.
#> ✓ [2021-05-18 23:15:57]: Done.
#> ℹ [2021-05-18 23:15:57]: 1.562 secs elapsed.

str(mt_tally_DBS$all_matrices, max.level = 1)
#> List of 3
#>  $ DBS_78  : int [1:100, 1:78] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ DBS_186 : int [1:100, 1:186] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ DBS_1248: int [1:100, 1:1248] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2

Program will stop if no records to analyze.

Let’s see ID records.

mt_tally_ID <- sig_tally(
  brca,
  ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
  useSyn = TRUE,
  mode = "ID",
  add_trans_bias = TRUE
)
#> ℹ [2021-05-18 23:15:57]: Started.
#> ✓ [2021-05-18 23:15:57]: Reference genome loaded.
#> ✓ [2021-05-18 23:15:57]: Variants from MAF object queried.
#> ✓ [2021-05-18 23:15:57]: Chromosome names checked.
#> ✓ [2021-05-18 23:15:57]: Sex chromosomes properly handled.
#> ✓ [2021-05-18 23:15:57]: Only variants located in standard chromosomes (1:22, X, Y, M/MT) are kept.
#> ✓ [2021-05-18 23:15:57]: Variant start and end position checked.
#> ✓ [2021-05-18 23:15:57]: Variant data for matrix generation preprocessed.
#> ℹ [2021-05-18 23:15:57]: INDEL matrix generation - start.
#> ✓ [2021-05-18 23:15:58]: Reference sequences queried from genome.
#> ✓ [2021-05-18 23:15:58]: INDEL length extracted.
#> ✓ [2021-05-18 23:15:58]: Adjacent copies counted.
#> ✓ [2021-05-18 23:16:21]: Microhomology size calculated.
#> ✓ [2021-05-18 23:16:21]: INDEL records classified into different components (types).
#> ✓ [2021-05-18 23:16:21]: ID-28 matrix created.
#> ✓ [2021-05-18 23:16:21]: ID-83 matrix created.
#> ✓ [2021-05-18 23:16:21]: ID-415 matrix created.
#> ℹ [2021-05-18 23:16:21]: Return ID-415 as major matrix.
#> ✓ [2021-05-18 23:16:21]: Done.
#> ℹ [2021-05-18 23:16:21]: 24.093 secs elapsed.

str(mt_tally_ID$all_matrices, max.level = 1)
#> List of 3
#>  $ ID_28 : int [1:100, 1:28] 0 1 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ ID_83 : int [1:100, 1:83] 0 1 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ ID_415:'data.frame':  100 obs. of  415 variables:

2.2.2.3 Take togother

If you want to get all matrices for SBS, DBS and ID at the same time, you don’t need to write a for loop or type three times to do this. Just set mode='ALL', sigminer will do it for you!

mt_tally_all <- sig_tally(
  brca,
  ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
  useSyn = TRUE,
  mode = "ALL",
  add_trans_bias = TRUE
)
#> ℹ [2021-05-18 23:16:21]: Started.
#> ✓ [2021-05-18 23:16:21]: Reference genome loaded.
#> ✓ [2021-05-18 23:16:21]: Variants from MAF object queried.
#> ✓ [2021-05-18 23:16:21]: Chromosome names checked.
#> ✓ [2021-05-18 23:16:21]: Sex chromosomes properly handled.
#> ✓ [2021-05-18 23:16:21]: Only variants located in standard chromosomes (1:22, X, Y, M/MT) are kept.
#> ✓ [2021-05-18 23:16:21]: Variant start and end position checked.
#> ✓ [2021-05-18 23:16:21]: Variant data for matrix generation preprocessed.
#> ℹ [2021-05-18 23:16:21]: All types of matrices generation - start.
#> ℹ [2021-05-18 23:16:21]: SBS matrix generation - start.
#> ℹ [2021-05-18 23:16:21]: Extracting 5' and 3' adjacent bases.
#> ℹ [2021-05-18 23:16:23]: Extracting +/- 20bp around mutated bases for background C>T estimation.
#> ℹ [2021-05-18 23:16:23]: Estimating APOBEC enrichment scores.
#> ℹ [2021-05-18 23:16:23]: Performing one-way Fisher's test for APOBEC enrichment.
#> ✓ [2021-05-18 23:16:23]: APOBEC related mutations are enriched in 28% of samples (APOBEC enrichment score > 2; 28 of 100 samples)
#> ℹ [2021-05-18 23:16:23]: Creating SBS sample-by-component matrices.
#> ✓ [2021-05-18 23:16:23]: SBS-6 matrix created.
#> ✓ [2021-05-18 23:16:23]: SBS-96 matrix created.
#> ✓ [2021-05-18 23:16:23]: SBS-1536 matrix created.
#> ✓ [2021-05-18 23:16:23]: SBS-24 (6x4) matrix created.
#> ✓ [2021-05-18 23:16:24]: SBS-384 (96x4) matrix created.
#> ✓ [2021-05-18 23:16:24]: SBS-6144 (1536x4) matrix created.
#> ℹ [2021-05-18 23:16:24]: Return SBS-192 as major matrix.
#> ℹ [2021-05-18 23:16:24]: DBS matrix generation - start.
#> ℹ [2021-05-18 23:16:24]: Searching DBS records...
#> ✓ [2021-05-18 23:16:24]: Done.
#> ✓ [2021-05-18 23:16:25]: Reference sequences queried from genome.
#> ✓ [2021-05-18 23:16:25]: DBS-78 matrix created.
#> ✓ [2021-05-18 23:16:25]: DBS-1248 matrix created.
#> ✓ [2021-05-18 23:16:25]: DBS-186 matrix created.
#> ℹ [2021-05-18 23:16:25]: Return DBS-186 as major matrix.
#> ℹ [2021-05-18 23:16:25]: INDEL matrix generation - start.
#> ✓ [2021-05-18 23:16:27]: Reference sequences queried from genome.
#> ✓ [2021-05-18 23:16:27]: INDEL length extracted.
#> ✓ [2021-05-18 23:16:27]: Adjacent copies counted.
#> ✓ [2021-05-18 23:16:50]: Microhomology size calculated.
#> ✓ [2021-05-18 23:16:50]: INDEL records classified into different components (types).
#> ✓ [2021-05-18 23:16:50]: ID-28 matrix created.
#> ✓ [2021-05-18 23:16:50]: ID-83 matrix created.
#> ✓ [2021-05-18 23:16:50]: ID-415 matrix created.
#> ℹ [2021-05-18 23:16:50]: Return ID-415 as major matrix.
#> ℹ [2021-05-18 23:16:50]: All types of matrices generation (APOBEC scores included) - end.
#> ✓ [2021-05-18 23:16:50]: Done.
#> ℹ [2021-05-18 23:16:50]: 28.846 secs elapsed.

str(mt_tally_all, max.level = 1)
#> List of 14
#>  $ SBS_6        : int [1:100, 1:6] 7 6 5 4 9 7 5 5 0 5 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_24       : int [1:100, 1:24] 6 3 3 2 6 4 1 2 0 3 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_96       : int [1:100, 1:96] 0 0 0 0 0 0 1 2 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_192      : int [1:100, 1:192] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_384      : int [1:100, 1:384] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_1536     : int [1:100, 1:1536] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ SBS_6144     : int [1:100, 1:6144] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ DBS_78       : int [1:100, 1:78] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ DBS_186      : int [1:100, 1:186] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ DBS_1248     : int [1:100, 1:1248] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ ID_28        : int [1:100, 1:28] 0 1 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ ID_83        : int [1:100, 1:83] 0 1 0 0 0 0 0 0 0 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>  $ ID_415       :'data.frame':   100 obs. of  415 variables:
#>  $ APOBEC_scores:Classes 'data.table' and 'data.frame':  100 obs. of  44 variables:
#>   ..- attr(*, ".internal.selfref")=<externalptr> 
#>   ..- attr(*, "index")= int(0) 
#>   .. ..- attr(*, "__APOBEC_Enriched")= int [1:100] 17 21 23 24 25 26 27 28 30 32 ...

Please note, in this case, just a list containing matrices will return.

2.3 Extract Signatures

There are two different approaches can be used to implement signature extraction.

  1. Semi-automatic way. Firstly estimate signature number and then extract signatures. This is the basic usage of NMF package (Gaujoux and Seoighe 2010). Run multiple times of NMF in a range of signature number firstly and compute some measures to let you consider which signature number is suitable and then extract specified number of signatures again with NMF package.
  2. Automatic way. This includes multiple implementations, and will be described in corresponding part.

2.3.1 Method 1: Estimate Signature Number

To estimate signature number, we firstly run NMF for multiple times and calculate some measures from the results, then select the best signature number based on the measure vs. signature number plot.

This is done by sig_estimate() function. Let’s try signature number 2-6. For simplicity, we just run NMF twice for each signature number. We use 4 cores to speed up the computation.

library(NMF)

mt_est <- sig_estimate(mt_tally$nmf_matrix,
  range = 2:6,
  nrun = 10, # increase this value if you wana a more stable estimation
  use_random = FALSE, # if TRUE, add results from randomized input
  cores = 4,
  pConstant = 1e-13,
  verbose = TRUE
)

pConstant option is set to avoid errors raised by NMF package.

We can show signature number survey for different measures by show_sig_number_survey2().

## You can also select the measures to show
## by 'what' option
show_sig_number_survey2(mt_est$survey)

> For the details of all the measures above, please read Gaujoux and Seoighe (2010) and vignette of R package NMF.

The measures either provide stability (cophenetic) or how well can be reconstructed (rss).

Typically, measure cophenetic is used for determining the signature number. We can easily generate an elbow plot with function show_sig_number_survey().

show_sig_number_survey(mt_est$survey, right_y = NULL)

> The most common approach is to use the cophenetic correlation coefficient. Brunet et al. suggested choosing the smallest value of r for which this coefficient starts decreasing. (Gaujoux and Seoighe 2010)

Cophenetic value (range from 0-1) indicates the robustness of consensus matrix clustering. In this situation, 3 is good. However, we can found that the cophenetic values are all >=0.9 from 2 to 5. So the more suitable way is considering both stability and reconstruction error at the same time, it can be easily done by show_sig_number_survey().

show_sig_number_survey(mt_est$survey)

> This function is very flexible, you can pick up any measure to the left/right axis. However, the default setting is the most recommended way.

We can see that we get a minimal RSS in signature number, and when this value goes from 5 to 6, the RSS increase! So we should not choose signature number more than 5 here because 6 is overfitting.

NOTE: There are no gold standard to determine the signature number. Sometimes, you should consider multiple measures. Remember, the most important thing is that you should have a good biological explanation for each signature. The best solution in study may not be the best solution in math.

2.3.2 Method 1: Extract Signatures

After selecting a suitable signature number, now you can extract signatures. In general, use 30~50 NMF runs will get a robust result.

Here we extract 5 signatures.

mt_sig <- sig_extract(mt_tally$nmf_matrix,
  n_sig = 5,
  nrun = 30,
  cores = 4,
  pConstant = 1e-13
)

2.3.3 Method 2: Auto-extraction

If you have no idea to select an optimal signature number from procedures above, you can try auto-extraction approaches provided by sigminer.

The latest version of sigminer provides two ways to auto-extract mutation signatures.

  1. Auto-extract signatures by automatic relevance determination technique in non-negative matrix factorization (Tan and Févotte 2012), the code is implemented by SignatureAnalyzer (Kim et al. 2016) and exported to sigminer. This approach is known as bayesian NMF.
  2. Auto-extract signatures by SigProfiler, the gold-standard tool used for identifying signatures cataloged in COSMIC database. The technical details please read Alexandrov et al. (2020).

2.3.3.1 Method 2: bayesian NMF

In this approach, you need to set a maximum signature number (default is 25) and run times to get the result. 10 for nrun here is okay, and more than 100 is not recommended. The bayesian NMF will starts from a larger signature number and reduce it to a proper signature number to maximize posterior probability.

mt_sig2 <- sig_auto_extract(mt_tally$nmf_matrix,
  K0 = 10, nrun = 10,
  strategy = "stable"
)

Here the program uses ‘robust’ strategy to return the result (see strategy option). It means that if you run 10 times and 6 of them return 4 signatures, then the optimal result with 4 signatures will be returned.

The info of each run can be given as:

knitr::kable(mt_sig2$Raw$summary_run)
Run K posterior file
3 3 -1497.670 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.3.rds
9 3 -1497.752 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.9.rds
2 3 -1498.428 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.2.rds
10 3 -1498.528 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.10.rds
6 3 -1498.596 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.6.rds
1 3 -1498.830 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.1.rds
7 3 -1498.890 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.7.rds
4 3 -1499.207 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.4.rds
8 3 -1524.316 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.8.rds
5 4 -1617.962 /var/folders/bj/nw1w4g1j37ddpgb6zmh3sfh80000gn/T//RtmpqXIwLJ/BayesNMF.5.rds

The mt_sig2 has similar structure as mut_sig.

2.3.3.2 Method 2: SigProfiler

Sigminer provides two functions sigprofiler_extract() and sigprofiler_import() to install, use SigProfiler and import SigProfiler results into R as a Signature object like other extraction methods mentioned above.

An (not running) example is given below (see ?sigprofiler for more info).

load(system.file("extdata", "toy_copynumber_tally_M.RData",
  package = "sigminer", mustWork = TRUE
))

reticulate::conda_list()

sigprofiler_extract(cn_tally_M$nmf_matrix, "~/test/test_sigminer",
  use_conda = TRUE
)

sigprofiler_extract(cn_tally_M$nmf_matrix, "~/test/test_sigminer",
  use_conda = FALSE, py_path = "/Users/wsx/anaconda3/bin/python"
)

2.4 Match Signatures

After extracting signatures, we need to know their etiologies. This can be done by comparing the identified signatures and reference signatures from COSMIC database.

sim <- get_sig_similarity(mt_sig2)
#> -Comparing against COSMIC signatures
#> ------------------------------------
#> --Found Sig1 most similar to COSMIC_3
#>    Aetiology: defects in DNA-DSB repair by HR [similarity: 0.82]
#> --Found Sig2 most similar to COSMIC_1
#>    Aetiology: spontaneous deamination of 5-methylcytosine [similarity: 0.942]
#> --Found Sig3 most similar to COSMIC_2
#>    Aetiology: APOBEC Cytidine Deaminase (C>T) [similarity: 0.84]
#> ------------------------------------
#> Return result invisiblely.

The result object sim is a list.

str(sim)
#> List of 4
#>  $ similarity  : num [1:3, 1:30] 0.82 0.264 0.373 0.581 0.942 0.165 0.085 0.256 0.84 0.714 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:3] "Sig1" "Sig2" "Sig3"
#>   .. ..$ : chr [1:30] "COSMIC_3" "COSMIC_1" "COSMIC_2" "COSMIC_4" ...
#>  $ aetiology_db:List of 1
#>   ..$ : chr [1:30] "spontaneous deamination of 5-methylcytosine" "APOBEC Cytidine Deaminase (C>T)" "defects in DNA-DSB repair by HR" "exposure to tobacco (smoking) mutagens" ...
#>  $ best_match  :List of 3
#>   ..$ Sig1:List of 2
#>   .. ..$ aetiology : chr "defects in DNA-DSB repair by HR"
#>   .. ..$ best_match: chr "Best match: COSMIC_3 [similarity: 0.82]"
#>   ..$ Sig2:List of 2
#>   .. ..$ aetiology : chr "spontaneous deamination of 5-methylcytosine"
#>   .. ..$ best_match: chr "Best match: COSMIC_1 [similarity: 0.942]"
#>   ..$ Sig3:List of 2
#>   .. ..$ aetiology : chr "APOBEC Cytidine Deaminase (C>T)"
#>   .. ..$ best_match: chr "Best match: COSMIC_2 [similarity: 0.84]"
#>  $ rss         : num [1:3, 1:30] 0.04166 0.00711 0.14698 0.2492 0.24257 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:3] "Sig1" "Sig2" "Sig3"
#>   .. ..$ : chr [1:30] "COSMIC_1" "COSMIC_2" "COSMIC_3" "COSMIC_4" ...
#>  - attr(*, "class")= chr [1:2] "similarity" "list"

From the result we can see that three signatures are properly matched to COSMIC reference signatures. If you find unknown signatures in your study, you should explore the etiologies by other analyses and even experiments.

The similarity matrix can be plotted.

pheatmap::pheatmap(sim$similarity)

You can also try the COSMIC signature database V3 with:

sim_v3 <- get_sig_similarity(mt_sig2, sig_db = "SBS")
#> -Comparing against COSMIC signatures
#> ------------------------------------
#> --Found Sig1 most similar to SBS3
#>    Aetiology: Defective homologous recombination DNA damage repair [similarity: 0.821]
#> --Found Sig2 most similar to SBS1
#>    Aetiology: Spontaneous deamination of 5-methylcytosine (clock-like signature) [similarity: 0.876]
#> --Found Sig3 most similar to SBS2
#>    Aetiology: Activity of APOBEC family of cytidine deaminases [similarity: 0.748]
#> ------------------------------------
#> Return result invisiblely.

2.5 Operate Signature

The result of sig_extract() or sig_auto_extract() is a list with Signature class. You can use $ or use operation function to obtain the data stored in it.

To get the signature matrix:

# Or mt_sig2$Signature
sig_signature(mt_sig2)[1:5, ]
#>                Sig1        Sig2         Sig3
#> A[T>C]A 0.008982565 0.012815512 0.0027641452
#> C[T>C]A 0.006295256 0.006378091 0.0008926155
#> G[T>C]A 0.013961272 0.002795088 0.0010525932
#> T[T>C]A 0.004574805 0.004748670 0.0012218410
#> A[C>T]A 0.004672896 0.018070168 0.0063343170

To get signature exposure matrix:

# Or mt_sig$Exposure
sig_exposure(mt_sig2)[, 1:5]
#>      TCGA-A1-A0SH-01A-11D-A099-09 TCGA-A2-A04N-01A-11D-A10Y-09 TCGA-A2-A0CP-01A-11W-A050-09
#> Sig1                     32.15907                    15.839732                    22.947414
#> Sig2                     16.59291                    32.478516                    22.476482
#> Sig3                     87.05947                     3.137845                     4.608987
#>      TCGA-A2-A0EP-01A-52D-A22X-09 TCGA-A2-A0EV-01A-11W-A050-09
#> Sig1                   14.4657384                     35.25795
#> Sig2                    0.4796753                     25.49099
#> Sig3                    6.9200983                     17.57883

get_sig_exposure() may be more useful, it can be used to return a data.frame and set an exposure threshold.

get_sig_exposure(mt_sig2)
#>                            sample          Sig1          Sig2          Sig3
#>   1: TCGA-A1-A0SH-01A-11D-A099-09  3.215907e+01  1.659291e+01  8.705947e+01
#>   2: TCGA-A2-A04N-01A-11D-A10Y-09  1.583973e+01  3.247852e+01  3.137845e+00
#>   3: TCGA-A2-A0CP-01A-11W-A050-09  2.294741e+01  2.247648e+01  4.608987e+00
#>   4: TCGA-A2-A0EP-01A-52D-A22X-09  1.446574e+01  4.796753e-01  6.920098e+00
#>   5: TCGA-A2-A0EV-01A-11W-A050-09  3.525795e+01  2.549099e+01  1.757883e+01
#>   6: TCGA-A2-A0SX-01A-12D-A099-09  1.890198e+01  1.190887e+01  9.765504e+00
#>   7: TCGA-A2-A0T7-01A-21D-A099-09  7.058436e+00  2.206062e+01  2.063678e-01
#>   8: TCGA-A2-A0YF-01A-21D-A10G-09  1.308864e+01  2.872085e+01 3.276018e-121
#>   9: TCGA-A2-A25F-01A-11D-A167-09  8.956460e+00 2.075076e-322  0.000000e+00
#>  10: TCGA-A2-A3XW-01A-11D-A23C-09  1.022872e+01  7.998442e+00  6.307634e-01
#>  11: TCGA-A2-A4S1-01A-21D-A25Q-09  7.051307e+01  2.151502e+01  4.647996e+00
#>  12: TCGA-A7-A0D9-01A-31W-A071-09  2.911793e+01  1.460116e+01  1.642104e+01
#>  13: TCGA-A7-A13F-01A-11D-A12Q-09  1.445889e-99  7.200445e+01  1.005387e+01
#>  14: TCGA-A7-A5ZV-01A-11D-A28B-09  1.744084e+02  3.859699e+01  3.691587e+01
#>  15: TCGA-A8-A06P-01A-11W-A019-09  2.224565e+01  1.850442e+01  3.520406e+00
#>  16: TCGA-A8-A076-01A-21W-A019-09  3.334543e+01  4.665212e+01  1.243664e+01
#>  17: TCGA-A8-A07W-01A-11W-A019-09  1.027996e+02  4.510342e+01  2.145630e+01
#>  18: TCGA-A8-A084-01A-21W-A019-09  1.875160e+01  3.524792e+01  2.879974e+01
#>  19: TCGA-A8-A08S-01A-11W-A050-09  1.735008e+01  4.659754e+01  1.427450e-05
#>  20: TCGA-A8-A09G-01A-21W-A019-09  2.720241e-49  1.598340e+01  3.015537e+02
#>  21: TCGA-A8-A0A4-01A-11W-A019-09  1.301530e+01  2.414905e+01  9.673844e-01
#>  22: TCGA-A8-A0AB-01A-11W-A050-09  2.224326e+01  1.070162e+01  4.625000e+00
#>  23: TCGA-AC-A2B8-01A-11D-A17D-09  4.581254e-74  2.077930e+01  1.039934e+02
#>  24: TCGA-AC-A2FO-01A-11D-A17W-09  8.224234e+00  6.022061e+00  1.457732e+01
#>  25: TCGA-AC-A3YI-01A-21D-A23C-09  1.181688e+01  8.021717e+00 4.392543e-188
#>  26: TCGA-AC-A8OS-01A-12D-A41F-09  3.481344e+01  2.558226e+01  1.892168e+01
#>  27: TCGA-AN-A0FK-01A-11W-A050-09  2.057755e-97  5.410512e+01 6.931546e-201
#>  28: TCGA-AN-A0FT-01A-11W-A050-09  2.445782e+01  6.250409e+01  3.692872e+01
#>  29: TCGA-AN-A0XO-01A-11D-A10G-09  1.852324e+01  1.228874e+01  1.174155e+01
#>  30: TCGA-AO-A1KS-01A-11D-A13L-09  4.164234e+00  3.175461e+01  1.956542e+01
#>  31: TCGA-AQ-A54O-01A-11D-A25Q-09  3.055399e-28  2.459937e+01  5.953473e-01
#>  32: TCGA-AQ-A7U7-01A-22D-A351-09  1.358585e+01  1.441648e+01  7.330881e+01
#>  33: TCGA-AR-A0TP-01A-11D-A099-09  5.768672e+01  6.630986e+00  5.803076e+00
#>  34: TCGA-AR-A0U3-01A-11D-A10G-09  1.733324e+01  2.281135e+01 3.013800e-322
#>  35: TCGA-AR-A1AH-01A-11D-A12B-09  9.496609e+01  1.443596e+01  8.395297e+00
#>  36: TCGA-AR-A1AJ-01A-21D-A12Q-09  7.534377e+00  2.369358e+01  2.277121e+01
#>  37: TCGA-AR-A1AN-01A-11D-A12Q-09  6.529774e+00  2.102345e+01  5.820990e+00
#>  38: TCGA-AR-A24N-01A-11D-A167-09  2.004502e+01  2.261256e+01  4.435549e+00
#>  39: TCGA-AR-A252-01A-11D-A167-09  6.130705e+00  1.263644e+01 3.556170e-312
#>  40: TCGA-AR-A2LL-01A-11D-A17W-09  1.503319e+01  2.218907e+01 8.682292e-233
#>  41: TCGA-AR-A2LO-01A-31D-A18P-09  1.413060e+01  2.481548e+00  3.266687e+00
#>  42: TCGA-B6-A0IE-01A-11W-A050-09  2.018322e+01  1.947366e+01  2.614518e+00
#>  43: TCGA-B6-A0IM-01A-11W-A050-09  2.162813e+01  1.865495e+01  3.521674e-57
#>  44: TCGA-B6-A0IP-01A-11D-A045-09  1.442865e+01  3.592925e+01  8.112508e-01
#>  45: TCGA-B6-A0RV-01A-11D-A099-09 1.560069e-177  1.750629e+01  4.905081e+01
#>  46: TCGA-B6-A0WZ-01A-11D-A10G-09  6.958489e+00  6.417496e+00  8.073838e+01
#>  47: TCGA-B6-A0X1-01A-11D-A10G-09  4.814384e+01  2.024595e+01  2.160594e+01
#>  48: TCGA-B6-A1KC-01B-11D-A159-09  1.272953e+01  2.179920e+01  7.508081e-01
#>  49: TCGA-B6-A401-01A-11D-A23C-09  1.081423e+01  1.941480e+01  2.059546e-01
#>  50: TCGA-B6-A40C-01A-11D-A23C-09  1.830003e+01  3.154423e+01  2.647047e+00
#>  51: TCGA-BH-A0AV-01A-31D-A10Y-09  6.587096e+01  2.929251e+00  1.572687e+01
#>  52: TCGA-BH-A0BT-01A-11D-A12Q-09  6.568456e+00  3.775611e+01  2.752085e+00
#>  53: TCGA-BH-A0DL-01A-11D-A10Y-09  2.910845e+01  6.775503e+01  2.920173e+01
#>  54: TCGA-BH-A0DO-01B-11D-A12B-09  1.010194e+01  1.427067e+01  5.289001e+00
#>  55: TCGA-BH-A0DT-01A-21D-A12B-09  3.335864e+00  1.048536e+01  2.024691e+00
#>  56: TCGA-BH-A0GY-01A-11W-A071-09  1.586565e+01  2.609193e+01 7.451332e-171
#>  57: TCGA-BH-A0H6-01A-21W-A071-09  1.075555e+01  1.584751e+01 6.033999e-182
#>  58: TCGA-BH-A18K-01A-11D-A12B-09  2.201843e+01  1.341495e+01  3.649113e+01
#>  59: TCGA-BH-A1FU-01A-11D-A14G-09  6.503440e+01  2.615015e+01  2.435476e+01
#>  60: TCGA-BH-A202-01A-11D-A14K-09  9.499339e+00  1.718580e+01  8.725869e-01
#>  61: TCGA-BH-A5IZ-01A-11D-A27P-09  1.272274e+02  1.895424e+01  3.599703e+01
#>  62: TCGA-BH-A6R8-01A-21D-A33E-09  1.333218e+01  2.247599e+01  5.410627e+00
#>  63: TCGA-BH-A8G0-01A-11D-A351-09  5.329473e-61  2.044391e+01  0.000000e+00
#>  64: TCGA-C8-A131-01A-11D-A10Y-09  2.892229e+01  4.000734e+01  4.478124e+00
#>  65: TCGA-D8-A147-01A-11D-A10Y-09  1.170598e+02  3.708374e+00  7.345449e+01
#>  66: TCGA-D8-A1JG-01B-11D-A13L-09  8.510523e+01  6.270187e+01  2.084379e+01
#>  67: TCGA-D8-A1JH-01A-11D-A188-09  1.123474e+01  1.153185e+01  9.875530e-01
#>  68: TCGA-D8-A1JJ-01A-31D-A14K-09  1.266815e+01  3.477698e+01  5.170826e+01
#>  69: TCGA-D8-A1JT-01A-31D-A13L-09  2.184767e+01  2.034265e+01  0.000000e+00
#>  70: TCGA-D8-A1JU-01A-11D-A13L-09  9.975756e+00  9.782078e+00  6.083460e-02
#>  71: TCGA-D8-A1X7-01A-11D-A14K-09  1.298671e+01  1.517123e+01  3.439192e+00
#>  72: TCGA-D8-A1X8-01A-11D-A14K-09  1.460678e+01  1.557185e+01  2.380506e+00
#>  73: TCGA-D8-A1XL-01A-11D-A14K-09  7.763404e+01  2.055349e+01  7.951866e+00
#>  74: TCGA-D8-A27V-01A-12D-A17D-09  3.443723e-45  3.089542e+01  1.885408e+02
#>  75: TCGA-E2-A108-01A-13D-A10M-09  3.697383e+01  1.205971e+01  1.342740e+02
#>  76: TCGA-E2-A10F-01A-11D-A10M-09 1.114497e-181  2.407471e+01  5.142756e+00
#>  77: TCGA-E2-A14T-01A-11D-A10Y-09  1.818548e+01  1.757560e+01  7.623413e+00
#>  78: TCGA-E2-A152-01A-11D-A12B-09  3.004158e-05  1.904189e+01  1.453822e+02
#>  79: TCGA-E2-A15D-01A-11D-A10Y-09  1.239561e+01  2.367115e+01  1.043255e-01
#>  80: TCGA-E2-A15L-01A-11D-A12B-09 8.316254e-163  3.696156e+01  7.198468e+00
#>  81: TCGA-E2-A1BD-01A-11D-A12Q-09  1.325256e+01  2.837122e+01  2.099082e-01
#>  82: TCGA-E2-A1IH-01A-11D-A188-09  1.809753e+01  2.554536e+01  4.060186e+01
#>  83: TCGA-E2-A1II-01A-11D-A142-09  3.354037e+01  8.480730e-01 3.013800e-322
#>  84: TCGA-E2-A1IJ-01A-11D-A142-09  6.756677e+00  1.299390e+01 2.269978e-182
#>  85: TCGA-E2-A1L6-01A-11D-A13L-09  3.756995e+00  2.424052e+01  2.129975e-01
#>  86: TCGA-E2-A9RU-01A-11D-A41F-09  2.127087e+01  6.202103e+01  2.115210e+01
#>  87: TCGA-E9-A1NE-01A-21D-A14K-09  5.089464e+01  3.340837e+00  6.326526e+00
#>  88: TCGA-E9-A22A-01A-11D-A159-09  1.977296e+01  6.638223e+00  1.027258e+01
#>  89: TCGA-E9-A22E-01A-11D-A159-09  9.379149e+01  8.398077e+00  4.506802e+01
#>  90: TCGA-E9-A3QA-01A-61D-A228-09  3.295112e+01  3.947921e+00  2.814997e+01
#>  91: TCGA-E9-A5FL-01A-11D-A27P-09  9.173188e+01  1.165295e+01  2.949295e+01
#>  92: TCGA-EW-A1PA-01A-11D-A142-09  2.061895e+01  1.721686e+01  4.530208e+00
#>  93: TCGA-EW-A1PH-01A-11D-A14K-09  2.609288e+01  3.002828e+01  8.280088e+00
#>  94: TCGA-GM-A2DB-01A-31D-A19Y-09  8.511084e+01  2.993667e+01  1.374699e+01
#>  95: TCGA-LD-A9QF-01A-32D-A41F-09  1.531207e+01  2.246112e+01  1.427438e+00
#>  96: TCGA-LL-A5YP-01A-21D-A28B-09  7.894136e+01  6.635690e+00  2.079587e+01
#>  97: TCGA-LL-A73Z-01A-11D-A32I-09  2.442986e+01  2.675728e+01  2.533581e+00
#>  98: TCGA-OL-A5RY-01A-21D-A28B-09  7.440440e+00  7.048267e+00  1.414288e+00
#>  99: TCGA-PE-A5DD-01A-12D-A27P-09  5.246539e+00  3.625459e+01  4.294177e+01
#> 100: TCGA-S3-AA17-01A-11D-A41F-09  9.522553e+01  2.687635e+01  2.082856e+01
#>                            sample          Sig1          Sig2          Sig3

For plotting signature profile and exposure profile, please go to chapter 8.

For optimizing signature exposure, please use sig_fit().